Different as “Internal” Anaphor

(1) a. John read a book.
 Fred read a different book. *internal
b. Every boy read a different poem. *internal
c. The boys read a different poem. *internal
d. The boys read different books. *internal

Observation: Internal different can associate across intervening distributors

(2) The boys gave the girls different poems

(3) Every boy gave every girl a different poem

(4) Each traffic engineer insisted that every intersection she controlled had to have a different speed at which its lights changed.

(5) It’s a disaster when a news anchor interviews a pundit who has recently appeared on a competitor’s network. So during an election year, each news anchor makes sure she interviews a different expert from each party.

Generalized AwD

- Association with Distributivity (AwD; Brasoveanu 2011): distributive quantifiers routinely duplicate discourse information, and thereby make available pairs of individuals

 *John ate each meal in a different room:

 \[
 \exists j \exists i \left((j \in b \land j \in d) \subseteq \left\{ \right(j \in b \land j \notin d \} \right) \left(j \notin b \land j \in d) \right\}
 \]

- Quantifier-Internal Anaphora: different merely checks that the copies opened up by the distributor differ in the relevant index

- The problem: in Brasoveanu, there is only one distributive channel (e.g., the second column, and each distributor overwrites it. Incorrectly predicts (3)–(5) as unambiguous.

- AwD Generalized: allow each distributor to introduce a new point of pairwise variation, and then tell different where to look to make the appropriate comparison

Fragment

Building on Brasoveanu 2011 and de Groote 2006; see B&B (to appear) for full details.

\[
\begin{align*}
\text{every} & \quad \lambda PQck \cdot (\forall x, y, z \neq y. P n c T \rightarrow (P n ; Q n c T) \land k c, \quad \text{where } e' = \left[c_1^{y/n}, \ldots, c_1^{x/n}, \ldots, c_{x/n}^{z/n} \right] \vspace{0.5em} \\
\text{a} & \quad \lambda PQck \cdot \exists x_1, \ldots, x_{n+1} (P n ; Q n c k), \quad \text{where } e' = \left[c_1^{x_1/n}, \ldots, c_{x_1/n}^{x_{n+1}/n} \right] \\
\end{align*}
\]

and () \[\lambda pqck \cdot P c (\lambda c'. q c k) \]

Derivations

(6) John read a poem. Fred read a different poem.

\[
\left(\text{john} \left(\lambda m \cdot (a^2 \text{poem}) (\lambda n \cdot \text{read } n m) \right) \right) ; \left(\text{fred} \left(\lambda m \cdot (a \cdot \text{diff}_{1,2} \text{poem}) (\lambda n \cdot \text{read } n m) \right) \right)
\]

\[
\lambda c k \cdot \exists x_1, \ldots, x_{n+1} (\forall (i \in c, i_n \in \text{poem}) \land k c) \wedge (\exists x_1, \ldots, x_{n+1} (\forall (i \in c', i_n \in \text{read}) \land k c')
\]

\[
\begin{cases}
\text{a, b} \\
\text{a poen} \rightarrow \text{b, a a} \\
\text{a2} \rightarrow \text{b, a a} \\
\text{fre3} \rightarrow \text{b, a a} \\
\text{a 1, a, b} \\
\text{a 2, a a} \\
\end{cases}
\]

(7) Every boy gave every girl a different poem

\[
\left(\text{every}^1 \text{ boy} \left(\lambda m \cdot \text{ every}^2 \text{ girl} (\lambda n \cdot (a \cdot \text{diff}_{1,2} \text{poem}) (\lambda l \cdot \text{give } l m)) \right) \right)
\]

\[
\lambda c k \cdot \exists x, y, z \neq y. (\forall (i \in c, i_1 \in \text{boy}) \rightarrow (\forall u, v, u \neq v. (\forall (i \in y, i_2 \in \text{girl}) \rightarrow (\exists x_1, \ldots, x_{n+1} (\forall l \in \text{poem}) \land \left(c_{3,2}^{x_3} \neq c_{3,1}^{x_1} \right) \wedge (\forall l \in \text{c'.} i_3 \in \text{give}) \land k c)
\]

\[
\begin{cases}
\text{a, b} \\
\text{every}^2 \text{ girl} \rightarrow \text{b, a a} \\
\text{a2} \rightarrow \text{b, a a} \\
\text{fre3} \rightarrow \text{b, a a} \\
\text{a 1, a, b} \\
\text{a 2, a a} \\
\end{cases}
\]

Adding Plurals

Plurals build sums, which can be split apart by a covert distributive operator (\(\Delta\)), but neither process distributively duplicates information

\[
\text{the}^n \quad \lambda PQck \cdot (P n ; Q n) \left[c_1^{y/n}, \ldots, c_{x/n}^{z/n} \right] k
\]

\[
-s \quad \lambda pqck \cdot \forall x \subseteq \left(\left(c_1 \right) \cdot P n \cdot c T \land k c
\]

\[
\Delta_j \quad \lambda pqck \cdot \forall i \in c, x \neq i_j, P n e k
\]

Next: Uniﬁy Sg. and Pl. Different?

- Brasoveanu accounts for (8) by optionally allowing different to introduce its own distributivity

(8) The boys read different poems

- This undercut the idea that internal different exploits a special feature of distributive quantifiers

- Yet, outside of singular/plural DPs, different and its relatives do not distinguish between unsaturated, plurals, adverbials, etc.

(9) a. The boys (all) laugh differently
b. [Each product, the products] differ(s) slightly
c. [John and Bill, Every student] is/are different

- Alternative: let different always do its own distributing; try to account for the contrast between sg. and pl. different in a more general theory of the licensing of internal singular DPs

(10) a. Every boy read a poem
b. The boys read a poem

References

Barker, C. and D. Bumford. To appear. Association with distributivity and the problem of multiple antecedents for singular different, L&P.
