
Composition under distributive natural transformations: Or, When
Predicate Abstraction is impossible

Dylan Bumford, UCLA

published at: http://dx.doi.org/10.1007/s10849-022-09361-2

Abstract Natural language semanticists have often found it useful to assume that all expressions denote sets of

values. The approach is most prominent in the study of questions and prosodic focus, but also common in work

on indefinites, disjunction, negative polarity, and scalar implicature. However, the most popular compositional

implementation of this idea is known to face technical obstacles in the presence of object-language binding constructs,

including, chiefly, lambda abstraction. The problem has been well-described on several occasions in the literature, and

in fact several solutions have been explored. This paper seeks to formalize the challenge of defining an indeterminate

semantics for binding operators, and to formally establish the intuition that the challenge is in fact insurmountable.

The primary benefit to this exercise is that it offers an abstract characterization of what it means to lift an operation

from one semantic space to another, a notion which may be applied to domains having nothing to do with sets of

alternatives.

1 Introduction

Compositional theories of natural language semantics often take the form of inductive interpretations of simply-

typed lambda terms. In much early work following Montague 1973 these terms comprise the metalanguage in

which denotations are expressed. Semantic analysis consists in translating natural language constituents into

formal terms with variable-binding constructs, and then assigning meanings to constituents by interpreting

their formal translations. In much contemporary work since the publication of Heim & Kratzer’s (1998)

influential textbook, object languages are themselves assumed to be structured as lambda terms, with variables

and variable-abstractions appearing directly in natural language abstract syntax.

Canonically, these expressions are interpreted in the familiar manner of Henkin 1950. Basic types τ are

associated with domains 𝑫τ, and functional types (στ) with functions 𝑓 : 𝑫σ�𝑫τ between domains. Terms are

evaluated relative to assignments that map typed variables 𝑣τ to objects in the relevant domain 𝑫τ. Abstractions
denote functions, modifying the assignments at which their bodies are evaluated.

For some purposes, however, these object- or meta-language lambda terms may be interpreted differently.

Perhaps most prominently, Rooth 1985 defined a semantics for Montague’s higher-order logic in which terms

of type τ are interpreted not as functions from assignments to objects in 𝑫τ, but rather as sets of such functions.
This, he argued, provides a formal strategy for comparing the meaning of an expression to the alternative
meanings it evokes, crucial to understanding the effects of prosodic focus. Later work in the spirit and shadow of

Rooth has extended this idea to explicate the semantic force of question particles (Hagstrom 1998), indeterminate

pronouns (Kratzer & Shimoyama 2002), disjunctions and indefinites (Alonso-Ovalle 2006), among other things.

But in many of these sequels, syntactic terms of type τ are not interpreted as sets of functions from assignments

to 𝑫τ, as in Rooth 1985, but as functions from assignments to sets of 𝑫τ values. Somewhat unfairly, but in

keeping with what terminological consistency there is in the literature, I will call interpretations in this latter

type signature Hamblin denotations, after Hamblin’s (1973) pioneering analysis of questions. In particular, where

Rooth interprets abstraction terms λ𝑣σ. 𝜙τ as sets of functions from assignments to elements of [𝑫σ � 𝑫τ] ,1 the
Hamblin semantics defined in, e.g., Hagstrom 1998 interprets them as functions from assignments to elements

of ℘ [𝑫σ � 𝑫τ] , the powerset of [𝑫σ � 𝑫τ].
Shan 2004 points out that these respective semantic spaces are far from equivalent, and moreover that the

denotations assigned to abstraction terms by Hagstrom and the others are inadequate to the empirical tasks they

1 I will use [𝑫σ � 𝑫τ] to pick out the set of functions from 𝑫σ to 𝑫τ, in lieu of the more traditional 𝑫𝑫σ
τ , as the arrow notation is better

suited to higher-order signatures.

1

http://dx.doi.org/10.1007/s10849-022-09361-2

are designed for. Worse, Shan contends that it is in fact impossible to define a suitable Hamblin denotation for

abstraction. Charlow 2019a observes that the same difficulties arise in trying to define other binding constructs,

including existential closure, if the denotations of their prejacents are functions from assignments into sets

instead of sets of functions from assignments.

The demonstrations in Shan 2004 and Charlow 2019a,b leave no doubt that the definition of abstraction in

Hagstrom 1998 and Kratzer & Shimoyama 2002 is empirically defective; the reader is referred to these works

for concrete illustrations of its failure, and illuminating discussion of the general nature of the problem. In this

note, I wish to contribute two small things to the discussion. First, I hope to offer a somewhat more abstract

criterion of adequacy for a Hamblin semantics of abstraction, or any other syntactic construct that has an

ordinary interpretation of the sort discussed in the second paragraph above. The goal here is to lay out a few
algebraic laws that we should expect to hold between the intended ordinary denotation of an operator and

its Hamblin denotation in the more structured semantic space. Second, I will prove that for a class of such

operators, including lambda abstraction, such a definition is indeed impossible, as Shan ordained.
2

In short, I will propose that an adequate semantics for abstraction depends on the existence of a natural
transformation between Roothian denotations and Hamblin denotations satisfying twomonad distributivity
laws. These are notions from Category Theory, though I will attempt to justify them on conceptually and

linguistically intuitive grounds (see Asudeh & Giorgolo 2020 for a more general linguistic introduction to

the mathematics). The strategy is general enough that it should extend to analyses that locate denotations

in other sorts of regimented structures, including values paired with propositions (Potts 2005, Koev 2017),

domains augmented with undefined elements (Beaver & Coppock 2015, Grove 2019), and values paired with

continuations (Krifka 1991, Barker 2016). I discuss these extensions briefly in Section 6.

2 Denotations in Hamblin space

I assume the simplest canonical definition of natural language logical forms consists in at least the following

syntax-driven interpretive clauses:
3

È𝑐É ≔ λ𝑔. I 𝑐 (1)

È𝑡𝑛É ≔ λ𝑔. 𝑔𝑛 (2)

È𝐸στ 𝐾σÉ ≔ λ𝑔. È𝐸É 𝑔 (È𝐹É 𝑔) (3)

Expressions of type σ denote functions from assignments to values in 𝑫σ. Lexical items 𝑐 are looked up in a

lexicon I . Variables 𝑡𝑛 correspond to projection functions on assignments. And appropriately typed binary

constituents are combined by function application.

To this bare-bones formalism, any number of unary variable-binding and type-shifting constructs and/or
alternative binary modes of combination may be added. Most fragments since Montague 1973 include a

“lambda” of some sort that denotes a function parameterized on the value assigned to a particular variable, as in

(4). Less selective binders have also been proposed (Lewis 1975, Heim 1982), along the lines of the universal

closure operator in (5). Linguistic type-shifters have come in all shapes and sizes; Partee’s (1986) Lift and Be, in
(6) and (7), are paradigmatic examples of the genre. Alternative binary modes of combination oriented around

Boolean operations and function composition are commonly entertained, as in (8) and (9).

2 Shan reported in a footnote that the issue with lambda abstraction could be “formalized using logical relations and parametricity (Reynolds
1983) as for programming languages.” I can only presume Shan had something like the proof presented here in mind.

3 This presentation follows the currently common linguistic practice of using undecorated numbers as abstractions and indexed 𝑡s as

variables. The lambdas on the right-hand sides of the denotation equations are intended to signify actual functions, whose domains and

codomains are given in the obvious way by the types of the constituents being interpreted. Application of a function to an argument is

indicated by (left-associated) juxtaposition.

2

È𝑛σ 𝐸É ≔ λ𝑔λ𝑎. È𝐸É 𝑔𝑛↦→𝑎
(4)

È †

𝐸É ≔ λ𝑔.∀ℎ. È𝐸É ℎ (5)

ÈL 𝐸σÉ ≔ λ𝑔λ𝑘. 𝑘 (È𝐸É 𝑔) (6)�
B 𝐸 (σt)t

�
≔ λ𝑔λ𝑎. È𝐸É 𝑔 (λ𝑏. 𝑏 = 𝑎) (7)

È𝐸σt 𝐾σtÉ ≔ λ𝑔λ𝑎. È𝐸É 𝑔 𝑎 ∧ È𝐾É 𝑔 𝑎 (8)�
𝐸ρτ 𝐾σρ

�
≔ λ𝑔λ𝑎. È𝐸É 𝑔 (È𝐾É 𝑔 𝑎) (9)

Early in the Montagovian era, Hamblin 1973 sketched an analysis of questions that sought to maintain as

much of the canonical fragment above as possible while assuming that ‘wh’-words like ‘who’ and ‘what’ ought

to behave for all compositional purposes like names. Yet of course such words cannot be assumed to refer to

specific individuals. Hamblin’s solution was to reanalyze all argument terms as denoting sets of individuals.
Names then played the special role of terms whose denotations were determinate, or singleton. In fact all

non-‘wh’-words were taken to denote determinate sets of values.

Let ⦃𝐸⦄ signify the Hamblin denotation of 𝐸. At any assignment, ‘wh’-phrases denote sets of entities,

suitably sortably restricted. Variables and non-‘wh’-constants of type σ are interpreted, relative to assignments,

as elements of ℘𝑫σ, that is, as sets of 𝑫σ objects.

⦃who⦄ ≔ λ𝑔. {𝑥 ∈ 𝑫e | person 𝑥} (10)

⦃𝑐⦄ ≔ λ𝑔. {I 𝑐} (11)

⦃𝑡𝑛⦄ ≔ λ𝑔. {𝑔𝑛} (12)

The question then is how to restore compositional, recursive operations like those in (4)–(9), keeping in

mind that their inventory may be open-ended and depend on analyses of phenomena completely independent of

questions. Hamblin himself suggested that function application ought to be executedpointwise; the combination

of an expression 𝜙 of type (στ) with an expression 𝜓 of type σ should be the set of all possible applications of a

function in ⦃𝜙⦄ to an argument in ⦃𝜓⦄.

⦃𝜙στ 𝜓σ⦄ = λ𝑔.

{
𝑓 𝑎

���� 𝑓 ∈ ⦃𝜙⦄ 𝑔,

𝑎 ∈ ⦃𝜓⦄ 𝑔

}
(13)

There is an obvious sense in which this definition generalizes the ordinary applicative mode of combination.

Let 𝑓 • 𝑎 ≔ 𝑓 𝑎 be the semantic operation of function application. Then the relevant clauses of both È·É and ⦃·⦄
can be written in terms of •:

𝑓 • 𝑎 ≔ 𝑓 𝑎 (14a)

È𝜙στ 𝜓σÉ = λ𝑔. (È𝜙É 𝑔) • (È𝜓É 𝑔) (14b)

⦃𝜙στ 𝜓σ⦄ = λ𝑔.

{
𝑓 • 𝑎

���� 𝑓 ∈ ⦃𝜙⦄ 𝑔,

𝑎 ∈ ⦃𝜓⦄ 𝑔

}
(14c)

This much is trivial, but it provides a clear schema for other modes of combination, as in (15) and (16).

𝑓 ◦ 𝑓 ′ ≔ λ𝑎. 𝑓 (𝑓 ′ 𝑎) (15a)�
𝜙ρτ 𝜓σρ

�
= λ𝑔. (È𝜙É 𝑔) ◦ (È𝜓É 𝑔) (15b)

⦃

𝜙ρτ 𝜓σρ
⦄

= λ𝑔.

{
𝑓 ◦ 𝑓 ′

���� 𝑓 ∈ ⦃𝜙⦄ 𝑔,

𝑓 ′ ∈ ⦃𝜓⦄ 𝑔

}
(15c)

𝑝 u 𝑞 ≔ λ𝑎. 𝑝 𝑎 ∧ 𝑞 𝑎 (16a)

È𝜙σ𝑡 𝜓σ𝑡É = λ𝑔. (È𝜙É 𝑔) u (È𝜓É 𝑔) (16b)

⦃𝜙σ𝑡 𝜓σ𝑡⦄ = λ𝑔.

{
𝑝 u 𝑞

���� 𝑝 ∈ ⦃𝜙⦄ 𝑔,

𝑞 ∈ ⦃𝜓⦄ 𝑔

}
(16c)

3

Likewise, various unary syntactic operators can be associated with semantic functions. Hamblin denotations

may then be generated by mapping these functions over the set of values returned by ⦃·⦄.

L ≔ λ𝑎λ𝑘. 𝑘 𝑎 (17a)

ÈL 𝐸É = λ𝑔. L (È𝐸É 𝑔) (17b)

⦃L 𝐸⦄ = λ𝑔. {L 𝑎 | 𝑎 ∈ ⦃𝐸⦄ 𝑔} (17c)

B ≔ λ𝑄λ𝑎. 𝑄 (λ𝑏. 𝑏 = 𝑎) (18a)

ÈB 𝐸É = λ𝑔.B (È𝐸É 𝑔) (18b)

⦃B 𝐸⦄ = λ𝑔. {B𝑄 | 𝑄 ∈ ⦃𝐸⦄ 𝑔} (18c)

However, this general strategy is no help in defining Hamblin denotations for the binding constructs. What

the rules above have in common is that the operations •, ◦, u, B, and L are all assignment-independent. They

are extensional. Binders, on the other hand, are definitionally assignment-modifying. In other words, there is

no function A such that È𝑛σ 𝜙É = λ𝑔.A (È𝜙É 𝑔), and so no function to stick into the translational template in

(17c) and (18c).

In light of this, a Hamblin denotation for abstraction terms must be ad-hoc. Given the typing regime, the goal

for any expression 𝐸 of type τ is to find for ⦃𝑛σ 𝐸⦄ a function from assignments to sets of 𝑫σ � 𝑫τ functions.
For instance, Kratzer & Shimoyama 2002, following Hagstrom 1998, define Hamblin abstraction as in (19).

⦃𝑛σ 𝐸⦄ ≔ λ𝑔. {𝑓 : 𝑫σ � 𝑫τ | ∀𝑎 ∈ 𝑫σ. 𝑓 𝑎 ∈ ⦃𝐸⦄ 𝑔𝑛↦→𝑎} (19)

This definition succeeds in picking out, relative to an assignment, a set of functions in the desired signature in

terms of the Hamblin denotation of its prejacent ⦃𝐸⦄. It is therefore well-typed and compositional. However,

Shan 2004, Romero & Novel 2013, and Charlow 2019a,b argue that this definition yields sets of alternatives that

include many conceptually suspect functions, and demonstrate that it leads directly to a variety of empirical

inadequacies.

Could we do better? There are certainly other ways to assemble a set of functions with the right domain and

codomain from ⦃𝜙⦄. It is hard to say a priori whether any of them would be adequate to empirical purposes,

that is, whether they would “do the job” that abstractions are supposed to do. The same goes for any other

binding construct. Given the lack of a systematic mapping procedure from ordinary space to Hamblin space for

such constructs, how should we determine which possible function from assignments to sets of the relevant

shape is appropriate for an operation, given its ordinary meaning, or whether any such appropriate denotation

even exists?

In the next section I formalize this question and offer a criterion of adequacy for any Hamblin denotation

of a compositional operation. I then prove that no denotation for an intensional operation, including variable
binding, can meet this criterion.

3 The formal problem

Let 𝜐 be a unary syntactic operator, so that for some class of expressions E , if 𝐸 ∈ E , then [𝜐 𝐸] is a well-formed

constituent. Assume also that the interpretation of 𝜐 is compositional, so that for any 𝐸, È𝜐 𝐸É is a function of

È𝐸É. As usual, we identify È𝜐É with this function. Finally, assume that the expressions in E take denotations

(relative to assignments) in some setA, and that the expressions [𝜐 𝐸] take denotations (relative to assignments)

in a setR. Then È𝜐É itself is a function from [G � A] to [G � R] , where G is the domain of assignments.

Call any such 𝜐 extensional if È𝜐É is such that for any 𝑔 ∈ G and 𝛼 : G � A:

È𝜐É 𝛼 𝑔 = È𝜐É (λ𝑔′. 𝛼 𝑔) 𝑔 (20)

That is, at any assignment 𝑔, È𝜐É cares only about the value that its argument 𝛼 takes at 𝑔. For instance, the

Partee type-shiftersL and B are extensional, given the definitions in (6) and (7):

4

ÈLÉ ≔ λ𝛼λ𝑔λ𝑘. 𝑘 (𝛼 𝑔) (21)

ÈLÉ (λ𝑔′. 𝛼 𝑔) 𝑔 = λ𝑘. 𝑘 ((λ𝑔′. 𝛼 𝑔) 𝑔) (22a)

= λ𝑘. 𝑘 (𝛼 𝑔) (22b)

= ÈLÉ 𝛼 𝑔 (22c)

ÈBÉ ≔ λ𝛼λ𝑔λ𝑥. 𝛼 𝑔 (λ𝑦. 𝑦 = 𝑥) (23)

ÈBÉ (λ𝑔′. 𝛼 𝑔) 𝑔 = λ𝑥. (λ𝑔′. 𝛼 𝑔) 𝑔 (λ𝑦. 𝑦 = 𝑥) (24a)

= λ𝑥. 𝛼 𝑔 (λ𝑦. 𝑦 = 𝑥) (24b)

= ÈBÉ 𝛼 𝑔 (24c)

Call any 𝜐 intensional if it doesn’t satisfy the equation in (20). In general, any sort of binding or context-

shifting operator will be intensional. For instance, the abstraction and closure constructs in (4) and (5) are

intensional, as seen in (26) and (28).

È𝑛É ≔ λ𝛼λ𝑔λ𝑥. 𝛼 𝑔𝑛↦→𝑥
(25)

È𝑛É (λ𝑔′. 𝛼 𝑔) 𝑔 = λ𝑥. (λ𝑔′. 𝛼 𝑔) 𝑔𝑛↦→𝑥
(26a)

= λ𝑥. 𝛼 𝑔 (26b)

≠ È𝑛É 𝛼 𝑔 (26c)

È †É ≔ λ𝛼λ𝑔.∀ℎ. 𝛽 ℎ (27)

È †É (λ𝑔′. 𝛼 𝑔) 𝑔 = ∀ℎ. (λ𝑔′. 𝛼 𝑔) ℎ (28a)

= ∀ℎ. 𝛼 𝑔 (28b)

≠ È †É 𝛼 𝑔 (28c)

Similarly, when 𝜇 is a compositional binary mode of combination È𝜙 𝜓É𝜇, we write È·É𝜇 for that function
which combines any appropriately typed È𝜙É and È𝜓É to produce È𝜙 𝜓É𝜇. So if (at an assignment) 𝜙 denotes a

value inA, 𝜓 a value in B, and [𝜙 𝜓] a value inR, then È·É𝜇 : [G � A] × [G � B] � [G � R].
In this case, we say 𝜇 is extensional if È·É𝜇 is such that for any 𝑔 ∈ G , 𝛼 : G � A, and 𝛽 : G � B:

È·É𝜇 (𝛼, 𝛽) 𝑔 = È·É𝜇 (λ𝑔′. 𝛼 𝑔, λ𝑔′. 𝛽 𝑔) 𝑔 (29)

And otherwise, we say 𝜇 is intensional. The modes of combination in (3), (8) and (9) are all extensional.

Finally, as discussed in Section 2, for any expression 𝐸 of type σ, assume that the Hamblin denotation ⦃𝐸⦄

is (relative to an assignment) a subset of 𝑫σ. That is, ⦃𝐸⦄ : G � ℘𝑫σ. Here then is the question:

For an arbitrary operator 𝜐, is it possible to define a sensible Hamblin denotation ⦃𝜐 𝐸⦄ in terms of

È𝜐É and ⦃𝐸⦄? Or, likewise, for an arbitrary mode of combination 𝜇, is it possible to define a sensible

Hamblin mode ⦃𝜙 𝜓⦄𝜇 in terms of È·É𝜇, ⦃𝜙⦄, and ⦃𝜓⦄?
(30)

Say for concreteness that 𝐸 has type τ and [𝜐 𝐸] has type ρ. Then ⦃𝜐 𝐸⦄ should be a function from G to ℘𝑫ρ,
assembled somehow from ⦃𝐸⦄ : G � ℘𝑫τ and È𝜐É : [G � 𝑫τ] �

[
G � 𝑫ρ

]
. There are two basic obstacles

here. One is that È𝜐É expects a function from G to 𝑫τ, but ⦃𝐸⦄ is a function from G to ℘𝑫τ. The other is that
È𝜐É returns a function from G to 𝑫ρ, but the Hamblin denotation ⦃𝜐 𝐸⦄ should be a function from G to ℘𝑫ρ.

The same issue arises with binary combination. Say 𝜙 has type σ, 𝜓 has type τ and [𝜙 𝜓] has type ρ. Then
⦃𝜙 𝜓⦄𝜇 ought to be a function from G to ℘𝑫ρ. But the mismatches now are doubled. On the one hand, È·É𝜇
expects a pair of functions G � 𝑫σ and G � 𝑫τ, though ⦃𝜙⦄ and ⦃𝜓⦄ deliver a pair of functions G � ℘𝑫σ
and G � ℘𝑫τ. On the other hand, ⦃𝜙 𝜓⦄ is supposed to deliver a function G � ℘𝑫ρ, but È·É𝜇 provides only a
function G � 𝑫ρ.

What is needed then is a map Υ : [G � ℘𝑫τ] � ℘ [G � 𝑫τ] to transform a function into sets into a set of

functions. With that, the Hamblin denotations could be defined as follows:

⦃𝜐 𝐸⦄ ≔ λ𝑔. {È𝜐É 𝜑 𝑔 | 𝜑 ∈ Υ⦃𝐸⦄} (31)

⦃𝐸 𝐹⦄𝜇 ≔ λ𝑔.

{
È·É𝜇 (𝜑, 𝜓) 𝑔

���� 𝜑 ∈ Υ⦃𝐸⦄,

𝜓 ∈ Υ⦃𝐹⦄

}
(32)

For extensional rules, it’s easy enough to concoct such a map. The following would work (note the similarity

with (19)), as would others.

Υ ≔ λΦ. {𝜑 : G � 𝑫τ | ∀ℎ ∈ G. 𝜑 ℎ ∈ Φ ℎ} (33)

5

Since an extensional È𝜐É only ever evaluates its argument at its own input 𝑔, the set determined by (31) and (33)

depends only on the image of ⦃𝐸⦄ at 𝑔. For example,

⦃L 𝐸⦄ = 𝜆𝑔. {ÈLÉ 𝜑 𝑔 | 𝜑 ∈ Υ⦃𝐸⦄} (34a)

= 𝜆𝑔. {ÈLÉ 𝜑 𝑔 | ∀ℎ ∈ G. 𝜑 ℎ ∈ ⦃𝐸⦄ ℎ} (34b)

= 𝜆𝑔. {λ𝑘. 𝑘 (𝜑 𝑔) | ∀ℎ ∈ G. 𝜑 ℎ ∈ ⦃𝐸⦄ ℎ} (34c)

= 𝜆𝑔. {λ𝑘. 𝑘 𝑎 | 𝑎 ∈ ⦃𝐸⦄ 𝑔} (34d)

= 𝜆𝑔. {L 𝑎 | 𝑎 ∈ ⦃𝐸⦄ 𝑔} (34e)

The set described in (34c) is determined by the collection of functions 𝜑 which have the property that at any

assignment ℎ, they pick out an element of ⦃𝐸⦄ ℎ. There are a great many such functions. But since for each

one, λ𝑘. 𝑘 (𝜑 𝑔) simply projects out the value that it takes at 𝑔, almost all of the variation among the possible 𝜑s

is irrelevant. All that matters is what value they choose at 𝑔. And as (34c) guarantees, the values available at 𝑔

are all and only the values in ⦃𝐸⦄ 𝑔. Thus the intimidating expression in (34c) is reduced to the familiar (34d),

which is exactly in accordance with the schema in (17c).

But for intensional operators, this Υ is clearly inappropriate. Consider for instance the closure operator

†

. Perhaps the simplest cases to inspect are those in which

†

’s prejacent contains no free variables at all. The

ordinary denotation of such an expression is equivalent to the ordinary denotation of the prejacent, since the

quantification over assignments is vacuous:

È †[John left]É = λ𝑔.∀ℎ. ÈJohn leftÉ ℎ (35a)

= λ𝑔.∀ℎ. le� j (35b)

= λ𝑔. le� j (35c)

But things are quite different for the Hamblin denotation of such a vacuously closed expression. Assume,

following the discussion in Section 2, that ⦃who left⦄ = λ𝑔. {le� 𝑧 | 𝑧 ∈ 𝑫e}. Then (31)–(33) predict:

⦃[†[who left]]⦄ = λ𝑔. {È †É 𝜑 𝑔 | 𝜑 ∈ Υ⦃who left⦄} (36a)

= λ𝑔. {È †É 𝜑 𝑔 | ∀ℎ ∈ G. 𝜑 ℎ ∈ ⦃who left⦄ ℎ} (36b)

= λ𝑔. {È †É 𝜑 𝑔 | ∀ℎ ∈ G. 𝜑 ℎ ∈ {le� 𝑧 | 𝑧 ∈ 𝑫e}} (36c)

= λ𝑔. {∀ℎ. 𝜑 ℎ | ∀ℎ ∈ G. 𝜑 ℎ ∈ {le� 𝑧 | 𝑧 ∈ 𝑫e}} (36d)

= λ𝑔. {∀𝑥 ∈ 𝐷. le� 𝑥 | 𝐷 ⊆ 𝑫e, 𝐷 ≠ ∅} (36e)

Any 𝜑 that meets the comprehension condition in (36d) is a function that sends each ℎ ∈ G to a proposition

of the form (le� 𝑧), where 𝑧 is an entity. Some such functions map every assignment to le� j, others to le�m;

others may map some assignments to le� j and other assignments to le�m; etc. For any of these 𝜑s, to say that

𝜑 ℎ is true at every ℎ is to say that every proposition in the range of 𝜑 is true. In other words, at any input 𝑔, the

alternatives in ⦃

†[who left]⦄ 𝑔 are all propositions of the form “everyone in 𝐷 left”, for arbitrary settings of

who’s in 𝐷. This is certainly an interesting set of propositions, but not at all what you’d expect when trying to

bind all of the free variables in this sentence with no free variables.
4
Things get only less predictable when there

really are variables to bind, as the reader may verify.

So the question in (30) comes down to whether there exists an Υ : [G � ℘𝑫τ] � ℘ [G � 𝑫τ] that could
deliver sensible results in (31) and (32).

4 As it happens, when propositions are identified with simple Boolean values, the denotation in (36e) is in fact equivalent to ⦃who left⦄ =

λ𝑔. {le� 𝑧 | 𝑧 ∈ 𝑫e}, due to the coarseness of nonempty sets of bits (there are only three!). If instead le� 𝑧 is the set of worlds in which

𝑧 left, for instance, the function in (36e) is clearly different from the Hamblin denotation of the question.

6

4 Proposal: Distributive Natural Transformations

I would like to suggest that any transformation Υ worth considering ought to satisfy the following three

constraints. For any types σ and τ, and any 𝑃 ⊆ 𝑫σ, 𝑓 : 𝑫σ � 𝑫τ, 𝜑 : G � 𝑫σ, and Φ : G � ℘𝑫σ:

Υ (λ𝑔. 𝑃) = {λ𝑔. 𝑥 | 𝑥 ∈ 𝑃} Left
Υ (λ𝑔. {𝜑 𝑔}) = {𝜑} Right

Υ (λ𝑔. {𝑓 𝑥 | 𝑥 ∈ Φ 𝑔}) = {λ𝑔. 𝑓 (𝜑 𝑔) | 𝜑 ∈ ΥΦ} Nat

These are the natural transformation and distributivity laws when assignment-dependence and indeterminacy

are considered as monads. More on this in Section 5. But first, let’s see what they amount to for practical

linguistic purposes.

Imagine that an operator’s prejacent contains no variables, traces, pronouns, etc. The Hamblin denotation

of such a constituent will be a constant function from assignments to some set 𝑃 ⊆ 𝑫σ. What set of assignment-

dependent values should Υ return? Left guarantees that in this case, the set we get back is just the set of constant
functions into the elements of 𝑃.

Assume, as is common, that focus alternatives are calculated using Hamblin denotations. That is, prosodi-

cally focused expressions contribute ordinary denotations to ordinary truth conditions, but at the same time

raise the specter of alternative denotations from the same domain. These alternative values contribute to

calculations of alternative propositions, ideas evoked but not uttered. For instance, the alternatives elicited

by placing stress on ‘John’ in ‘John smiled’ are just propositions about other people smiling (Mary smiled, Bill

smiled, etc.). Left ensures the result in (37). Upon repackaging, the alternatives of ‘JohnF smiled’ are just the

ordinary denotations ‘z smiled’ for other type-e expressions z.

Υ
⦃

JohnF smiled
⦄

= Υ (λ𝑔. {smiled 𝑧 | 𝑧 ∈ 𝑫e}) (37a)

= {λ𝑔. smiled 𝑧 | 𝑧 ∈ 𝑫e} (37b)

= {Èz smiledÉ | z :: e} (37c)

More generally, if [· · · xF · · ·] is variable-free, then Left guarantees the identity in (38), where 𝑎 ∼ 𝑏means

that 𝑎 has the same type as 𝑏. In other words, in purely extensional contexts where assignments are irrelevant,

focus alternatives can be computed from ordinary denotations by simply replacing focused constituents with

expressions of the same type.

Υ⦃[· · · xF · · ·]⦄ = {È[· · · z · · ·]É | z ∼ x} (38)

Note that this immediately ensures that variable closure (or any other intensional operation) over a closed

formula is vacuous, in contrast to (33).

⦃

†

𝐸⦄ = λ𝑔. {È †É 𝜑 𝑔 | 𝜑 ∈ Υ⦃𝐸⦄} (39a)

= λ𝑔. {È †É 𝜑 𝑔 | 𝜑 ∈ {λ𝑔′. 𝑝 | 𝑝 ∈ ⦃𝐸⦄ 𝑔}} (39b)

= λ𝑔. {È †É (λ𝑔′. 𝑝) 𝑔 | 𝑝 ∈ ⦃𝐸⦄ 𝑔} (39c)

= λ𝑔. {∀ℎ. 𝑝 | 𝑝 ∈ ⦃𝐸⦄ 𝑔} (39d)

= λ𝑔. {𝑝 | 𝑝 ∈ ⦃𝐸⦄ 𝑔} (39e)

= ⦃𝐸⦄ (39f)

Now imagine that an operator’s prejacent contains no interesting alternative-generating language; no

‘wh’-words, focused constituents, etc. Its Hamblin denotation 𝜑, at any assignment, is just the singleton set of its

7

ordinary denotation at that assignment. Then Right guarantees that when this denotation is passed to Υ, the
result contains exactly the one function that maps any 𝑔 to the single element in 𝜑 𝑔.5

For instance, assume that the Hamblin denotation of a vanilla declarative sentence, like ‘he smiled’, is just the

function λ𝑔. {È𝑡1 smiledÉ 𝑔}, mapping assignments to singleton ordinary denotations. Then Right ensures:

Υ⦃[𝑡1 smiled]⦄ = Υ (λ𝑔. {smiled 𝑔1}) (40a)

= {λ𝑔. smiled 𝑔1} (40b)

More generally, if 𝐸 contains no alternative-generating expressions (is focus-free, etc.), then Right guarantees:

Υ⦃𝐸⦄ = {È𝐸É} (41)

At the very least, this ensures that abstraction satisfies 𝜂-reduction in the absence of focus. Assume that 𝐸

contains no focus-marking and no free occurrence of 𝑡𝑛 (the latter is only important to justifying the step from

(42f) to (42g)).

⦃𝑛 [𝐸 𝑡𝑛]⦄ = λ𝑔. {È𝑛É 𝜑 𝑔 | 𝜑 ∈ Υ⦃𝐸 𝑡𝑛⦄} (42a)

= λ𝑔. {È𝑛É 𝜑 𝑔 | 𝜑 ∈ {È𝐸 𝑡𝑛É}} (42b)

= λ𝑔. {È𝑛É È𝐸 𝑡𝑛É 𝑔} (42c)

= λ𝑔. {λ𝑎. È𝐸 𝑡𝑛É 𝑔𝑛↦→𝑎} (42d)

= λ𝑔. {λ𝑎. È𝐸É 𝑔𝑛↦→𝑎 𝑎} (42e)

= λ𝑔. {È𝐸É 𝑔𝑛↦→𝑎} (42f)

= λ𝑔. {È𝐸É 𝑔} (42g)

= ⦃𝐸⦄ (42h)

Nat is more complicated, but guarantees that Υ is not ad-hoc, in the sense that it should perform “the same”

operation no matter what size or type of denotation it is passed. To see this, let~R and~H be defined as in (43)

and (44).

~H : [G � ℘ [A � B]] × [G � ℘A] � [G � ℘B] (43a)

Φ~H 𝜉 ≔ λ𝑔. {𝑓 𝑥 | 𝑓 ∈ Φ 𝑔, 𝑥 ∈ 𝜉 𝑔} (43b)

~R : ℘ [G � [A � B]] × ℘ [G � A] � ℘ [G � B] (44a)

Φ~R 𝜉 ≔ {λ𝑔. 𝑓 𝑔 (𝑥 𝑔) | 𝑓 ∈ Φ, 𝑥 ∈ 𝜉} (44b)

Both of these operations have a claim to the name Pointwise Function Application. The former is just

Hamblin’s version of application, introduced in (13), reified as a combinator. It combines an assignment-

dependent set of functions from A to B with an assignment-dependent set of values in A to produce an

assignment-dependent set of results in B. The latter is the Roothian analog of this. It combines a set of

assignment-dependent functions fromA to B with a set of assignment-dependent values inA to produce a set

of assignment-dependent results in B. In other words, (43) would combine two denotations before Υ has gone

to work on them, (44) after.

5 This rule, incidentally, is in line with Charlow’s (2019a) interpretation of the abstraction rule proposed in Kotek 2017:

⦃𝑛 𝐸⦄ ≔ λ𝑔.
{
λ𝑎. 𝜄𝑝. 𝑝 ∈ ⦃𝐸⦄ 𝑔𝑛 ↦→𝑎

}
[Charlow 2019a: (16)]

In other words, Kotek can be seen as adopting the special case of Right that applies to lambda abstraction, though she also argues, in

effect, that when Right is inapplicable, abstraction should be undefined. In any case, the point is that Right does the only reasonable
thing when alternatives are trivial (i.e., when Hamblin denotations are isomorphic ordinary denotations).

8

WhatNat guarantees is that when Φ is deeply uninteresting, it won’t make any difference which of (43) or

(44) you pick. Let Φ = λ𝑔. {𝑓 }, for some function 𝑓 : A � B. If this is the Hamblin denotation of an expression,

then that expression must be free of any alternative-generating constituents (declarative, unfocused, etc.), since

the value at any assignment is a singleton set of alternatives. Likewise, it must be free of any assignment-sensitive

constituents (traces, pronouns, etc.), since the value at every assignment is the same. And in fact, every such

focus- and pronoun-free expression will have as its Hamblin denotation some function in the shape of Φ. In
these circumstances, Nat is exactly the requirement that Υ is a homomorphism with respect to the two notions

of Pointwise Function Application.

Υ (Φ~H 𝜉) = ΥΦ~R Υ 𝜉 (45)

This, together with Left and Right, ensures that the alternatives generated by Υ depend only on the

anaphoric and indeterminate components of its prejacent. Ordinary content rides free. For instance, consider

the sentence ‘her momF called John’, with the referent of ‘her’ free and prosodic focus on mom. This sentence

contains a mixture of anaphoric, indeterminate, and plain language. By Nat, we are assured that Hamblin

application~H of the predicate ‘called John’ to the subject ‘her mom’ satisfies the following equations:

Υ⦃𝑡𝑛’s momF called John⦄ = Υ (⦃called John⦄~H ⦃𝑡𝑛’s momF⦄) (46a)

= Υ⦃called John⦄~R Υ⦃𝑡𝑛’s momF⦄ (46b)

= {λ𝑔. call j} ~R Υ⦃𝑡𝑛’s momF⦄ (46c)

= {λ𝑔. call j (𝜑 𝑔) | 𝜑 ∈ Υ⦃𝑡𝑛’s momF⦄} (46d)

Combining this with the general recipe in (31), we are guaranteed that abstracting over 𝑛 in the constituent

[𝑡𝑛’s momF called John] will generate the set of alternative properties in (47).

⦃𝑛 [𝑡𝑛’s momF called John]⦄ = λ𝑔. {λ𝑥. call j (𝜑 𝑔𝑛↦→𝑥) | 𝜑 ∈ Υ⦃𝑡𝑛’s momF⦄} (47)

For each assignment-dependent entity 𝜑 that Υ transforms ⦃𝑡𝑛’s momF⦄ into, we get a function that is true of

𝑥 whenever 𝜑 𝑔𝑛↦→𝑥
called John. The important thing to see here is that the property of John-calling is what

each alternative 𝜑 is tested for, but byNat, this property can play no role in determining what the alternatives

actually are. Those are determined entirely by the constituents containing pronouns and focus.

5 The impossibility of Hamblin abstraction

Here is the main result: the three requirements Left, Right, and Nat are together inconsistent. There cannot be
any such Υ that is well-behaved on focus-free and pronoun-free language. And consequently there cannot be

any means of interpreting an intensional operator [𝜐 𝐸] in terms of its ordinary behavior È𝜐É, and its prejacent’s
Hamblin denotation ⦃𝐸⦄.

The result actually has nothing to do with assignments, variables, or “alternatives” per se, as others have
deduced (e.g., Rooth 1985: ch. II, pt. 3, Heim 2011: sec. 3, Charlow 2019a: pg. 10). So what is proved here is a

more general fact about functions with certain signatures. We start by situating Hamblin’s and Rooth’s typing

assumptions in a more abstract setting. Let 〈S, 1S, S〉 and 〈R, 1R, R〉 be the following functors, whereR is

any fixed set.

9

SA ≔ ℘A (48)

1S : A � SA (49a)

1S ≔ λ𝑥. {𝑥} (49b)

S : [A � B] � [SA � SB] (50a)

S ≔ λ𝑓λ𝐴. {𝑓 𝑥 | 𝑥 ∈ 𝐴} (50b)

RA ≔ [R � A] (51)

1R : A �RA (52a)

1R ≔ λ𝑥λ𝑟. 𝑥 (52b)

R : [A � B] � [RA �RB] (53a)

R ≔ λ𝑓λ𝜑λ𝑟. 𝑓 (𝜑 𝑟) (53b)

S andR are functions from domains to domains. For any setA,SA returns the powerset ofA, andRA returns

the set of functions fromR to A. These constructors are both equipped with two polymorphic operations,

a unit and a map. For any domain A, the unital operation lifts objects in A to objects in the relevant domain

image. The mapping operation lifts functions between domains 𝑓 : A�B to functions between their images, e.g.,

S 𝑓 : SA � SB. To say thatR and S are functors is to say that these latter operations are homomorphisms

for function composition, as the reader may verify:

S (λ𝑎. 𝑎) = λ𝐴. 𝐴 (54)

S (𝑓 ′ ◦ 𝑓) = S 𝑓 ′ ◦ S 𝑓 (55)

R (λ𝑎. 𝑎) = λ𝜑. 𝜑 (56)

R (𝑓 ′ ◦ 𝑓) = R 𝑓 ′ ◦ R 𝑓 (57)

From these, define the two composite functors 〈RS, 1RS, RS〉 and 〈SR, 1SR, SR〉. These are simply the

compositions of the constructorsR and S, together with the compositions of their associated maps.

RSA ≔ (R ◦ S)A (58)

= [R � SA] (59)

1RS : A �RSA (60a)

1RS ≔ 1R ◦ 1S (60b)

= λ𝑥λ𝑟. {𝑥} (60c)

RS : [A � B] � [RSA �RSB] (61a)

RS ≔ R ◦ S (61b)

= λ𝑓λΦλ𝑟. {𝑓 𝑥 | 𝑥 ∈ Φ 𝑟} (61c)

SRA ≔ (S ◦R)A (62)

= ℘ [R � A] (63)

1SR : A � SRA (64a)

1SR ≔ 1S ◦ 1R (64b)

= λ𝑥. {λ𝑟. 𝑥} (64c)

SR : [A � B] � [SRA � SRB] (65a)

SR ≔ S ◦R (65b)

= λ𝑓λΦ. {λ𝑟. 𝑓 (𝜑 𝑟) | 𝜑 ∈ Φ} (65c)

When we fixR to be the domain of assignments G, the first composition RS is the set of possible Hamblin

denotations. For any expression 𝐸 of type σ, the setRS𝑫σ contains ⦃𝐸⦄. The latter composition SR is the set

of possible denotations à la Rooth.

The question put to us in (30) turns on what kinds of transformations betweenRS and SR are possible.

For our purposes, let us say that a transformation Υ : RS� SR is a polymorphic function from the space

of Hamblin denotations to those of Rooth. That is, for any domainA, Υ determines a function fromRSA to

SRA.

Then we say Υ : RS� SR is natural iff the following diagram commutes for all setsA and B.

RSA RSB

SRA SRB

Υ

RS 𝑓

Υ

SR 𝑓

10

That is, for any 𝑓 : A�B and Φ : RSA, we have the following equivalence. WhenR = G , this is the eponymous

law proposed in Section 4.

Υ (λ𝑟. {𝑓 𝑥 | 𝑥 ∈ Φ 𝑟}) = {λ𝑟. 𝑓 (𝜑 𝑟) | 𝜑 ∈ ΥΦ} Nat

We say a transformation Υ : RS� SR is distributive iff the following diagrams commute.

SA

RSA SRA

1R S 1R

Υ

RA

RSA SRA

R 1S 1S

Υ

That is, for any 𝐴 ∈ SA and 𝜑 : RA, we have the following equivalences. Again, whenR = G, these are the
laws of Section 4.

Υ (λ𝑟. 𝐴) = {λ𝑟. 𝑥 | 𝑥 ∈ 𝐴} Left
Υ (λ𝑟. {𝜑 𝑟}) = {𝜑} Right

Claim: No transformation Υ : RS� SR is both natural and distributive.

Proof: Consider the following model.

R ≔ {𝑟1, 𝑟2}
A ≔ {2, 3, 4, 5}
B ≔ {T, F}

Φ : RSA

Φ ≔

[
𝑟1 ↦→ {2, 3}
𝑟2 ↦→ {4, 5}

] 𝑓1, 𝑓2, 𝑓3 : A � B
𝑓1 𝑛 ≔ T iff 2 | 𝑛
𝑓2 𝑛 ≔ T iff 𝑛 | 10
𝑓3 𝑛 ≔ T iff 𝑛 < 4

Φ is a function fromR to ℘A. It sends 𝑟1 to the subset {2, 3} and 𝑟2 to the subset {4, 5}. The functions 𝑓1, 𝑓2,
and 𝑓3 map elements ofA to truth values. The first of these 𝑓1 is the characteristic function of even numbers

inA. The second is the characteristic function of the numbers inA that are factors of 10. And the third the

characteristic function of numbers less than 4. As we’ll see, the crucial configuration in this model is that the

three functions cross-cutA in three different ways, relative to Φ:

Φ :

[
𝑟1 ↦→ {2, 3}
𝑟2 ↦→ {4, 5}

] [
𝑟1 ↦→ {2, 3}
𝑟2 ↦→ {4, 5}

] [
𝑟1 ↦→ {2, 3}
𝑟2 ↦→ {4, 5}

]
T F
𝑓1

F T
𝑓2

T

F
𝑓3

Let Υ be a transformationRS�SR, and assume for the purposes of contradiction that Υ satisfiesNat, Left,
and Right. Since Υ maps any object of typeRSA to an object of type SRA, it must in particular map Φ to

some set of functions ΥΦ in ℘ [R � A].

Part 1

1. λ𝑟. {𝑓1 𝑥 | 𝑥 ∈ Φ 𝑟} =
[
𝑟1 ↦→ {T, F}
𝑟2 ↦→ {T, F}

]
.

2. So by Left: Υ (λ𝑟. {𝑓1 𝑥 | 𝑥 ∈ Φ 𝑟}) = Υ (λ𝑟. {T, F}) = {λ𝑟. T, λ𝑟. F}.

11

3. ByNat: Υ (λ𝑟. {𝑓1 𝑥 | 𝑥 ∈ Φ 𝑟}) = {λ𝑟. 𝑓1 (𝜑 𝑟) | 𝜑 ∈ ΥΦ}.

4. So {λ𝑟. 𝑓1 (𝜑 𝑟) | 𝜑 ∈ ΥΦ} = {λ𝑟. T, λ𝑟. F}.

5. This means that every function 𝜑 in ΥΦmust be such that either (i) 𝜑 𝑟 is even at every 𝑟 ∈ R, or (ii) 𝜑 𝑟 is

odd at every 𝑟 ∈ R. And ΥΦ must include at least one of each variety.

Part 2

1. λ𝑟. {𝑓2 𝑥 | 𝑥 ∈ Φ 𝑟} =
[
𝑟1 ↦→ {T, F}
𝑟2 ↦→ {F, T}

]
.

2. So by Left, Υ (λ𝑟. {𝑓2 𝑥 | 𝑥 ∈ Φ 𝑟}) = Υ (λ𝑟. {T, F}) = {λ𝑟. T, λ𝑟. F}.

3. ByNat, Υ (λ𝑟. {𝑓2 𝑥 | 𝑥 ∈ Φ 𝑟}) = {λ𝑟. 𝑓2 (𝜑 𝑟) | 𝜑 ∈ ΥΦ}.

4. So {λ𝑟. 𝑓2 (𝜑 𝑟) | 𝜑 ∈ ΥΦ} = {λ𝑟. T, λ𝑟. F}.

5. This means that every function 𝜑 in ΥΦmust be such that either (i) 𝜑 𝑟 is a divisor of 10 at every 𝑟 ∈ R, or

(ii) 𝜑 𝑟 is a non-divisor of 10 at every 𝑟 ∈ R. And ΥΦ must include at least one of each variety.

Part 3

1. λ𝑟. {𝑓3 𝑥 | 𝑥 ∈ Φ 𝑟} =
[
𝑟1 ↦→ {T}
𝑟2 ↦→ {F}

]
.

2. So by Right, Υ (λ𝑟. {𝑓3 𝑥 | 𝑥 ∈ Φ 𝑟}) = Υ

[
𝑟1 ↦→ {T}
𝑟2 ↦→ {F}

]
=

{[
𝑟1 ↦→ T
𝑟2 ↦→ F

]}
.

3. ByNat, Υ (λ𝑟. {𝑓3 𝑥 | 𝑥 ∈ Φ 𝑟}) = {λ𝑟. 𝑓3 (𝜑 𝑟) | 𝜑 ∈ ΥΦ}.

4. So {λ𝑟. 𝑓3 (𝜑 𝑟) | 𝜑 ∈ ΥΦ} =
{[
𝑟1 ↦→ T
𝑟2 ↦→ F

]}
.

5. This means that every function 𝜑 in ΥΦ must be such that 𝜑 𝑟1 ∈ {2, 3} and 𝜑 𝑟2 ∈ {4, 5}. And ΥΦ must

include at least one such function.

Part 4

1. Given Part 3, if 𝜑 picks 2 for 𝑟1, it must pick 4 or 5 for 𝑟2. By Part 1, since 2 is even, 𝜑 𝑟2 must be even as well,

so it must be 4; but by Part 2, since 2 divides 10, 𝜑 𝑟2 must also divide 10, so it must be 5. This is impossible,

so 𝜑 can’t pick 2 for 𝑟1.

2. Given Part 3, if 𝜑 picks 3 for 𝑟1, it must pick 4 or 5 for 𝑟2. By Part 1, since 3 is odd, 𝜑 𝑟2 must be odd as well,

so it must be 5; but by Part 2, since 3 doesn’t divide 10, 𝜑 𝑟2 must also not divide 10, so it must be 4. This is

impossible, so 𝜑 can’t pick 3 for 𝑟1.

3. So there can’t be any 𝜑 ∈ ΥΦ, since by Part 3 any such 𝜑 would have to pick either 2 or 3 for 𝑟1, but neither
choice is possible. And since ΥΦ must be non-empty (by all three parts), we have a contradiction.

12

Thus there is no natural, distributive Υ : RS � SR, since any such function would have to make all three

diagrams commute for Φ at 𝑓1, 𝑓2, and 𝑓3, which is impossible. �

It should be clear that I have used numbers and truth values here just to make the functions simple, familiar,

and describable. The reasoning is entirely abstract as regards the elements ofR,A, and B. In particular, when

R is G , we are assured that there is no natural, distributive transformation between the two denotational spaces

for composing alternatives at issue in this paper. Moreover, it follows immediately that any parameter to the

ordinary denotation function È·É will suffer the same fate. This includes worlds, times, indexical contexts,

judges, etc. And consequently, we cannot expect to define abstractions or any other modal operators.

6 Outlook

I have argued that the Hamblin denotation of an intensional rule of composition depends on the existence of a

transformation Υ : [G � ℘A] � ℘ [G � A] , per (31) and (32), repeated here.

⦃𝜐 𝐸⦄ ≔ λ𝑔. {È𝜐É 𝜑 𝑔 | 𝜑 ∈ Υ⦃𝐸⦄} (66)

⦃𝐸 𝐹⦄𝜇 ≔ λ𝑔.

{
È·É𝜇 (𝜑, 𝜓) 𝑔

���� 𝜑 ∈ Υ⦃𝐸⦄,

𝜓 ∈ Υ⦃𝐹⦄

}
(67)

The narrow formal result established in the previous section is that no such transformation can be both natural

and distributive in the sense of Left, Right, andNat. I’ve also suggested that these are requirements we should

expect any decent Hamblin definition to meet. They guarantee very basic things about the correspondence

between a rule’s ordinary behavior and its Hamblin behavior.

But strictly speaking, the logic here is very weak. One is free to reject the entire framing in terms of (66)

and (67) and/or reject any of the distributivity and naturality laws. Ultimately the question is about when a

definition counts as a reasonable generalization of an operation. Of course, in analyzing a particular construct, we
may assign it an arbitrary Hamblin denotation to see if it makes predictions we like. What the proof here shows

is that the hopes of doing this in any systematic way, any way which is neutral about the ordinary semantics of

the construct, are dashed.

Before closing, let me also point out that the laws here are highly abstract. They depend only on the

functorial nature of S andR. And sets are not the only functors that have been exploited to structure natural

language denotations. To give two examples: First, Heim & Kratzer 1998 interpret expressions of type σ as

denoting partial functions from assignments to 𝑫σ. The denotation of an expression like ’her1 guitar’ is only
defined for assignments that map 1 to an individual with a guitar. LetMA = A ∪ {⊥}, where ⊥ is an object

not in the domain of any type. Then we may identify the partial denotation of an expression T𝐸σU as a function

from G toM𝑫σ. If È𝐸σÉ is defined at 𝑔, then the partial denotation and the ordinary denotation coincide;

otherwise T𝐸σU 𝑔 = ⊥.
Second, for various purposes ordinary denotations can be paired with supplemental content (e.g., Potts 2005,

Martin 2013, Koev 2017). For concreteness, say that an expression like ’John, a linguist’ denotes an entity paired

with the proposition that John is a linguist. LetWA = A × 𝑫π, where π is the type of propositions. Under
such assumptions, the bidimensional denotation of an expression j𝐸σo lies in G �W𝑫σ; at any assignment, it

denotes a pair whose left component is in 𝑫σ and whose right component is in 𝑫π.
BothM andW are functors, under the associated maps below (where > is the denotation of a tautology):

13

MA ≔ A ∪ {⊥} (68)

1M : A �MA (69a)

1M ≔ λ𝑎. 𝑎 (69b)

M : [A � B] � [MA �MB] (70a)

M ≔ λ𝑓λ𝑎.

{
⊥ if 𝑎 = ⊥
𝑓 𝑎 otherwise

(70b)

WA ≔ A × 𝑫π (71)

1W : A �WA (72a)

1W ≔ λ𝑎. 〈𝑎, >〉 (72b)

W : [A � B] � [WA �WB] (73a)

W ≔ λ𝑓λ〈𝑎, 𝑝〉. 〈𝑓 𝑎, 𝑝〉 (73b)

Consequently, their compositionsMR, RM, WR and RW are all functors as well. Unsurprisingly, when

attempting to extend ordinary compositional rules to rules in these enriched spaces, we run into precisely the

same obstacles as in Section 2. Namely, the only way to utilize È𝜐É is to provide it with a function 𝜑 : G � A,

but the relevant enriched denotations are functions from G toMA orWA. So we find ourselves again in need

of a transformations ΥM : [G �MA] �M [G � A] and ΥW : [G �WA] �W [G � A] . Outfitted with such
transformations, the following general templates would allow operations to be lifted as follows:

T𝜐 𝐸U ≔ λ𝑔.

{
⊥ if ΥM T𝐸U = ⊥
È𝜐É

(
ΥM T𝐸U

)
𝑔 otherwise

(74a)

T𝐸 𝐹U𝜇 ≔ λ𝑔.

{
⊥ if ⊥ ∈

{
ΥM T𝐸U, ΥM T𝐹U

}
È·É𝜇

(
ΥM T𝐸U, ΥM T𝐹U

)
𝑔 otherwise

(74b)

j𝜐 𝐸o ≔ λ𝑔. 〈È𝜐É 𝜑 𝑔, 𝑝〉, (75a)

where 〈𝜑, 𝑝〉 = ΥW j𝐸o

j𝐸 𝐹o𝜇 ≔ λ𝑔.
〈
È·É𝜇 (𝜑, 𝜓) 𝑔, 𝑝 ∧ 𝑞

〉
, (75b)

where 〈𝜑, 𝑝〉 = ΥW j𝐸o
〈𝜓, 𝑞〉 = ΥW j𝐹o

These transformations have corresponding naturality and distributivity laws, derived by replacing S with

M orW in the diagrams above. For any types σ and τ, and any 𝑥 ∈ 𝑫σ, 𝑝 ∈ 𝑫π, 𝑚 ∈ M𝑫σ, 𝑓 : 𝑫σ � 𝑫τ,
𝜑 : G � 𝑫σ, and Φ : G �M𝑫σ (or Φ : G �W𝑫σ, as appropriate):

ΥM (λ𝑔. 𝑚) =
{
⊥ if 𝑚 = ⊥
λ𝑔. 𝑚 otherwise

M.Left

ΥM 𝜑 = 𝜑 M.Right

ΥM

(
λ𝑔.

{
⊥ if Φ 𝑔 = ⊥
𝑓 (Φ 𝑔) otherwise

)
=

{
⊥ if ΥM Φ = ⊥
λ𝑔. 𝑓 ((ΥM Φ) 𝑔) otherwise

M.Nat

ΥW (λ𝑔. 〈𝑥, 𝑝〉) = 〈λ𝑔. 𝑥, 𝑝〉 W.Left
ΥW (λ𝑔. 〈𝜑 𝑔, >〉) = 〈𝜑, >〉 W.Right

ΥW
(
λ𝑔.

〈
𝑓 (Φ 𝑔)

0
, (Φ 𝑔)

1

〉)
= 〈λ𝑔. 𝑓 ((ΥW Φ)0 𝑔), (ΥW Φ)1〉 W.Nat

I will mostly leave to future research the investigation of what exactly these constraints impose on transforma-

tions. It is clear that there are solutions in both cases. For instance, the Υs defined in (76) and (77) satisfy their

three respective laws.

ΥM ≔ λΦ.

{
⊥ if ⊥ ∈ {Φ 𝑔 | 𝑔 ∈ G}
Φ otherwise

(76) ΥW ≔ λΦ.
〈
λ𝑔. (Φ 𝑔)

0
, (Φ 𝑔∗)

1

〉
(77)

In (76) any total function Φ is returned as is; any (non-total) partial function is sent to ⊥. This yields a kind of
WeakKleene semantics for binding operators, such that if any assignmentwould lead the prejacent to failure, then

14

the entire operation is undefined. (77) is considerably more arbitrary. For any Φ : G�W𝑫σ, the transformation

ΥW Φ returns a pair whose left component is the function that at any 𝑔 projects the left component of Φ 𝑔, but
whose right component is whatever supplemental content Φ takes at some fixed assignment 𝑔∗.

I take it to be obvious that at least the second of these would yield a completely inadequate semantics for,

say, lambda abstraction. Clearly if these laws are relevant to the program of lifting denotations from one setting

to another, they are merely necessary conditions. But then it is perhaps all the more surprising that no transition

from Hamblin to Rooth can meet even this minimal muster.

References

Alonso-Ovalle, Luis. 2006. Disjunction in alternative semantics. University of Massachusetts Amherst PhD

Dissertation.

Asudeh, Ash & Gianluca Giorgolo. 2020. Enriched meanings: natural language semantics with category theory.
Vol. 13. Oxford University Press.

Barker, Chris. 2016. Why relational nominals make good concealed questions. Lingua 182. 12–29. https :

//doi.org/https://doi.org/10.1016/j.lingua.2016.01.002.

Beaver, David & Elizabeth Coppock. 2015. Novelty and familiarity for free. In 20th Amsterdam Colloquium,
50–59.

Charlow, Simon. 2019a. E-closure and alternatives. Linguistic Inquiry. 1–18.
Charlow, Simon. 2019b. The scope of alternatives: Indefiniteness and islands. Linguistics and Philosophy. 1–46.
Grove, Julian. 2019. Scope-taking and presupposition satisfaction. The University of Chicago PhD Dissertation.

Hagstrom, Paul. 1998. Decomposing questions. Cambridge, MA: Massachusetts Institute of Technology PhD

Dissertation.

Hamblin, C. L. 1973. Questions in Montague English. Foundations of Language 10(1). 41–53.
Heim, Irene. 1982. The semantics of definite and indefinite noun phrases. Amherst: University of Massachusetts

Ph.D. Dissertation.

Heim, Irene. 2011. Compositional semantics of questions and wh-movement. Unpublished class notes: Topics

in Semantics.

Heim, Irene & Angelika Kratzer. 1998. Semantics in Generative Grammar. Oxford: Blackwell.
Henkin, Leon. 1950. Completeness in the theory of types. The Journal of Symbolic Logic 15(2). 81–91.
Koev, Todor. 2017. Quotational indefinites. Natural Language & Linguistic Theory 35(2). 367–396.
Kotek, Hadas. 2017. Intervention effects arise from scope-taking across alternatives. In The 47th annual meeting

of the North East Linguistic Society (NELS), 153–166.
Kratzer, Angelika & Junko Shimoyama. 2002. Indeterminate pronouns: The view from Japanese. In Yukio Otsu

(ed.), Third Tokyo conference on psycholinguistics, 1–25. Tokyo. https://doi.org/10.1007/978-3-319-10106-
4_7.

Krifka, Manfred. 1991. A compositional semantics for multiple focus constructions. In Steven Moore & Adam

Zachary Wyner (eds.), Semantics and linguistic theory (SALT) 1, 127–158. Cornell University: Cornell Univer-
sity Working Papers in Linguistics.

Lewis, David. 1975. Adverbs of quantification. In Edward Keenan (ed.), Formal semantics of natural language,
3–15. Cambridge, MA: Cambridge University Press.

Martin, Scott. 2013. The dynamics of sense and implicature. The Ohio State University PhD Dissertation.

Montague, Richard. 1973. The proper treatment of quantification in ordinary English. In Approaches to natural
language, 221–242. Dordrecht: D. Reidel Publishing Company.

Partee, Barbara. 1986. Noun phrase interpretation and type-shifting principles. In Jeroen Groenendijk, Dick

de Jongh & Martin Stokhof (eds.), Studies in Discourse Representation Theory and the theory of generalized
quantifiers, 115–144. Dordrecht: Foris. https://doi.org/10.1002/9780470751305.ch10.

15

https://doi.org/https://doi.org/10.1016/j.lingua.2016.01.002
https://doi.org/https://doi.org/10.1016/j.lingua.2016.01.002
https://doi.org/10.1007/978-3-319-10106-4_7
https://doi.org/10.1007/978-3-319-10106-4_7
https://doi.org/10.1002/9780470751305.ch10

Potts, Christopher. 2005. The logic of conventional implicatures (Oxford Studies in Theoretical Linguistics).

Oxford: Oxford University Press.

Reynolds, John. 1983. Types, abstraction and parametric polymorphism. In Information processing 83: proceedings
of the IFIP 9th world computer congress, 513–523. Amsterdam.

Romero, Maribel & Marc Novel. 2013. Variable binding and sets of alternatives. In Alternatives in semantics,
174–208. Springer.

Rooth, Mats. 1985. Association with focus. Amherst, MA: University of Massachusetts, Amherst PhD Dissertation.

Shan, Chung-chieh. 2004. Binding alongside Hamblin alternatives calls for variable-free semantics. In Laurence

Horn & Gregory Ward (eds.), Handbook of pragmatics (Blackwell Handbooks in Linguistics), 289–304.

Blackwell Publishers Ltd.

16

	Introduction
	Denotations in Hamblin space
	The formal problem
	Proposal: Distributive Natural Transformations
	The impossibility of Hamblin abstraction
	Outlook

