Effectful composition in natural language semantics

Dylan Bumford (UCLA) Simon Charlow (Rutgers)

June 27,2018 NASSLLI 2018 Carnegie Mellon

Overview

Techniques for structuring functional programs help us build semantic theories.

This isn’t surprising. Our jobs are remarkably similar: compositionally building

meaningful things from meaningful pieces. Often with some twists...

> Notions of effectful composition are common to linguistic semantics and

(functional) programming: (applicative) functors, (co)monads, etc.

» Taking this idea seriously reveals recurring structural patterns in linguistic

meaning composition, suggests unified analyses in varied domains.

Combining effects

Composition of effects is a longstanding issue in programming contexts.

> We’ll explore how various kinds of effects can be composed, in varied ways.

Different kinds of composition are useful for different kinds of things.

> Extended case study: monadic dynamic semantics (“composing” reading,

writing, nondeterminism), and its interaction with continuations.

(Effectful) composition

Syntax and semantics

Term = Con Int | Term :+: Term | Term :x: Term

= Con 1 :+: (Con 2 :x: Con 3) -- expl :: Term
= (Con 1 :+: Con 2) :x: Con 3 -- exp2 :: Term
(Con x) = X

(a :+: b) = (eval a) + (eval b)

(a :*: b) = (eval a) * (eval b)
eval expl = 7

eval exp2 = 9

Operations as higher-order functions

My interpreter says the following about the addition operation:

GHGi> :t (+)
(+) :: Int -> Int -> Int

And it says the following about the corresponding term language operator:

GHGi> :t (:+3)

(:+:) :: Term -> Term -> Term

Suggests another way to view term construction and evaluation.

Construction and evaluation via iterated function application

Term
Conl :+: (Con2 :=: Con3)

T

Term Term — Term

Conl Ax.x:+:(Con2 :x:Con3)

/\

Term — Term — Term Term
Con2 :x: Con3

N

Term Term — Term

AY.AX.X i+: Yy

Con2 Ax.x:=:Con3

T

Term — Term — Term Term

AV AX.X 1%y Con3

Int
7
Int Int- Int
1 AX.X + 6

TN

Int - Int — Int Int
Ay.AX.X+ Yy 6

RN

Int Int-Int
2 AX.X % 3

PN

Int - Int - Int Int
AV AX.X %k Y 3

A baseline (extensional) semantic theory

Start with some basic types, and then ascend:

Ti=elt|T—-T
——

e—t, (e—=t)—t,..

Interpret binary combination via (type-driven) functional application:

[« B] ;=[][R] or [BI[], whichever is defined

A couple examples

Polly

e—e—t

saw

Anna

A couple examples

e e—t
p sawa
Polly /\
e—e—t e
saw a

A couple examples

t
sawap
e e—t
p sawa
Polly /\
e—e—t e
saw a

A couple examples

t
sawap
/\
e e—t
p sawa
Polly /\ (e~t)—e e—-t e—e—t
L goalie fouled
e-e~t e the goalie fouled
saw a
saw Anna (e~t)—~e e-t
L striker

the striker

A couple examples

t
sawap

e e—t

p sawa
Polly /\
e—e—t e
saw a

saw Anna

(e—-1t)—e

the

e—-t e—e—t e
goalie fouled Lstriker
goalie fouled /\
(e—-t)—~e e—-t
L striker

the striker

A couple examples

t
sawap

e e—t

p sawa
Polly /\
e—e—t e
saw a

saw Anna

e—~t

fouled (ustriker)

N

(e—-t)—-e e—-t e—-e—-t e
L goalie fouled Lstriker
the goalie fouled /\
(e—-t)—~e e—-t
L striker

the striker

A couple examples

t
sawap

e e—t

p sawa
Polly /\
e—e—t e
saw a

saw Anna

e

Lgoalie

N

(e—-t)—-e e-—-t
L goalie

the goalie

e—~t

fouled (ustriker)

N

e—-e—t e

fouled ustriker

fouled /\

(e—-t)—~e e—-t
L striker

the striker

A couple examples

t
sawap

e e—t

p sawa
Polly /\
e—e—t e
saw a

saw Anna

N

t

fouled (tstriker) (Lgoalie)

/\

e e—~t

fouled (ustriker)

A

Lgoalie

(e—-t)—-e e—-t e—-e—-t
L goalie fouled Lstriker
the goalie fouled /\
(e—-t)—~e e—-t
L striker

the striker

Assignment-dependence

Natural languages have free and bound pro-forms.

1. John saw her. | wouldn’t _ if | were you.

2. Everybody; did their; homework. When I’'m supposed to work; | can’t _;.

Standardly: meanings depend on assignments (ways of valuing free variables).

o.l=elt|o—-0O T.:=Ro!=r—-o0

Interpret binary combination via assignment-sensitive functional application.

[Bl :=Ar.[a] r([B]F)
—

R(b—c) Rb
S —
Rc

A couple more examples

Re
Ar.j
John
R(e—e—1t) Re
Ar.saw Ar.ry
saw hery

(Apply the result to a contextually furnished assignment to get a proposition.)

A couple more examples

Re R(e — t)

Ar.j Ar.saw rg

John /\

R(e—e—1t) Re
Ar.saw Ar.ry

saw hery

(Apply the result to a contextually furnished assignment to get a proposition.)

A couple more examples

Rt
Ar.sawrpj
Re R(e — t)
Ar.j Ar.saw rg
John /\
R(e—e—1t) Re
Ar.saw Ar.ry
saw hery

(Apply the result to a contextually furnished assignment to get a proposition.)

A couple more examples

Rt
Ar.sawrpj
/\
Re R(e — t)
Ar.j Ar.saw rg
John /\ Re R(e—~e) R(e—e—1t)
Ar.rp Ar.mom Ar.knows
R(e—~e—1) Re heo 's mom knows
Ar.saw Ar.ry
saw hero Re R(e~e)

Ar.n Ar.dad
she; ’s dad

(Apply the result to a contextually furnished assignment to get a proposition.)

A couple more examples

Rt

Ar.sawrpj

TN

Re R(e — t)

Ar.j Ar.saw rg
John /\ Re R(e—~e) R(e—e—1) Re
Ar.rp Ar.mom Ar.knows Ar.dadn
R(e—e—1t) Re he ;
0 s mom knows
Ar.saw A /\

Re R(e —e)
Ar.n Ar.dad
she; ’s dad

saw hery

(Apply the result to a contextually furnished assignment to get a proposition.)

A couple more examples

Rt
Ar.sawrpj
Re R(e — t)
Ar.j Ar.saw rg
John /\
R(e—e—1t) Re
Ar.saw Ar.ry
saw hery

(Apply the result to a contextually furnished assignment to get a proposition.)

Re
Ar.ry

heo

R(e — t)

Ar.knows (dad ry)

N

R(e—~e) R(e—e—1t) Re
Ar.mom Ar.knows Ar.dadnry
s mom knows

RN

Re R(e —e)
Ar.n Ar.dad
she; ’s dad

A couple more examples

Rt

Ar.sawrpj

/\ Re R(e — t)
Ar.momry Ar.knows (dad ry)
Re R(e — t) /\ /\
Ar.j Ar.saw rg
John /\ Re R(e—~e) R(e—e—1) Re
Ar.rp Ar.mom Ar.knows Ar.dadn
R(e—e—1t) Re he ;
0 s mom knows
Ar.saw A /\

Re R(e —e)
Ar.n Ar.dad
she; ’s dad

saw hery

(Apply the result to a contextually furnished assignment to get a proposition.)

A couple more examples

Rt

Ar.knows (dad ry) (momrp)

N /\
Ar.sawrpj
/\ Re R(e — t)
Ar.momry Ar.knows (dad ry)
Re R(e —1t) /\
Ar.j Ar.saw rp /\
John /\ Re R(e—~e) R(e—e—1) Re
Ar.rp Ar.mom Ar.knows Ar.dadn
R(e—e—1t) Re he ;
0 s mom knows
Ar.saw A /\

Re R(e —e)
Ar.n Ar.dad
she; ’s dad

saw hery

(Apply the result to a contextually furnished assignment to get a proposition.)

Pulling out what matters

Key features of the standard approach to assignment-dependence:

> Uniformity: everything depends on an assignment (many things trivially).

> Enriched composition: [-] stitches assignment-relative meanings together.

Here’s another possibility: abstract out these key pieces, apply them on demand.

pXi=Ar.X me n.=Ar.mr(nr)
— Y
cf. [John] := Ar.j cf. [B] := Ar.[«] r([B]F)

In terms of types, p .. a — Ra,and ® :: R(a — b) — Ra — Rb.

An example

Ar.rg

sheg

spoke
e—t

spoke

An example

Ar.rg
Re
sheg

Ar.spoke

R(e — t)

p

spoke

e—t

spoke

An example

Ar.rg

sheg

An.Ar.spoke (nr)
Re — Rt

|
Ar.spoke
R(e —t)
o
spoke
e—t

spoke

An example

Ar.spoke ry
Rt
Ar.ry An.Ar.spoke (nr)

Re Re — Rt

sheg ‘®
Ar.spoke
R(e — t)

o

spoke

e—t

spoke

Applicatives

R’s p and ® make it an applicative functor (McBride & Paterson 2008, Kiselyov
2015). A type constructor F is applicative if it supports p and ® with these types. ..

p:ia—Fa ®:.:F(a—b)—-Fa—Fb

...Where p is a trivial way to inject something into the richer type characterized by

F, and @ is function application lifted into F:

Homomorphism Identity
pfepx=rp(fx) pAX.X)®V =V
Interchange Composition

p(Af.fX)ou=u®px plo)euevew=uoe (vew)

Alternatives'

It’'s common to treat question meanings as sets of possible answers:

3. Who ate the ham? ~ {atehx | x € human} :: St

4. Who ate what? ~ {ateyx | x € human, y € thing} :: St

Naturally handled using another applicative functor, for sets::

px:={x} men:={fx|femxen}

piia—-Sa ®::S(a—b)—-Sa—-Sb

' Cf. Hamblin 1973, Shan 2002, Charlow 2014, 2017.

Sample derivation, compared with context-sensitivity

{x | x € human}
Se

who

spoke
e—-t
spoke

Ar.rg

she

spoke
e—-t
spoke

Sample derivation, compared with context-sensitivity

{x | x € human}

Se
who
{spoke}
S(e—1t)
p
spoke
e—-t

spoke

Ar.rg
Re
she

Ar.spoke

R(e — t)

p

spoke

e—-t

spoke

Sample derivation, compared with context-sensitivity

{x | x € human} An.{spokex | x € n} Ar.ry An.Ar.spoke (nr)

Se Se—-St Re Re — Rt

who ‘ ® she ‘ ®
{spoke} Ar.spoke
S(e—1t) R(e - t)

E L

spoke spoke

e—-t e—-t

spoke spoke

Sample derivation, compared with context-sensitivity

{spokex | x € human}

St
{x | x € human} An.{spokex | x € n}

Se Se—-St

who ‘ ®
{spoke}
S(e—1t)

o

spoke

e—-t

spoke

Ar.spoke rp
Rt
Ar.ry An.Ar.spoke (nr)

Re Re — Rt

she ‘ ®
Ar.spoke
R(e — t)

o

spoke

e—-t

spoke

Supplementation?

Some expressions contribute information in a secondary “not-at-issue” register:

5. Joe, a linguist, lectured. ~ (lecturedj, [lingj]) ;1 Wt

6. Joe, a linguist, knows Mary, a philosopher. ~ (knowsmj, [lingj, philm]) :: Wt

Another example of an applicative functor, for supplements:

px:i=(xT[] (f,hexr) = (xl+r)
AL
piia—-Wa @ W(a—b)—-Wa—-Wb

2 Cf. Potts (2005), Giorgolo & Asudeh (2012), AnderBois, Brasoveanu & Henderson (2015).

Sample derivation:

Supplementation

(U, [lingj])
We

John, a linguist

spoke
e—~t

spoke

Sample derivation:

Supplementation

(U, [lingj])
We

John, a linguist
(spoke, [])
W(e —t)
P

spoke
e—~t

spoke

Sample derivation:

Supplementation

(U, [lingj])
We

John, a linguist

A(x,r).(spokex,[]+ r)
We — Wt
\@)
(spoke, [])
W(e —t)
o
spoke
e—t

spoke

Sample derivation:

Supplementation

(spokej, [lingj])
Wt

/\

(, [lingj1) A(x, r).(spokex, []+ r)
We We — Wt
John, a linguist ‘®
(spoke, [])
W(e —t)
o
spoke
e—t

spoke

Scope and continuations

Languages have quantificational expressions, and they take scope:
7. Every lecturer presented in a room on the third floor.
~ YV (Ax.3 (Ay.presyx))
~ F(Ay.V(Ax.presyx))

The relevant enrichment handles expressions with a scope (continuation):3

Cai=(a-r)—r V,3.:Cte=(e—-1t)~t

Yet another example of an applicative functor, for scope (continuations):

px:=Ak.kx mo n.=Ak.m(Af.n(Ax.k(f x)))

3 Barker (2002), Shan (2002), Shan & Barker (2006), Barker & Shan (2008, 2014), Charlow (2014).

Sample derivation:

Scope

Ak.Vx. kx
Ce

everyone

spoke
e—t
spoke

Sample derivation:

Scope
Ak.Vx. kx
Ce
everyone
Ak. kspoke
Cle—1t)
p
spoke
e—t

spoke

Sample derivation:

Scope
Ak.Vx. kx An.Ak.n(Ax. kspoke x)
Ce Ce—-Ct
everyone ‘@
Ak. kspoke
Cle—1t)
o
spoke
e—t

spoke

Sample derivation:

Scope
Ak.Vx. k (spoke x)
Ct
Ak.Vx. kx An.Ak.n(Ax. kspoke x)

Ce Ce—-Ct

everyone ‘@
Ak. kspoke
Cle—1t)

o

spoke

e—t

spoke

Scope alternations via flexibility in ®

It turns out that the Continuations applicative is non-commutative in that it admits

two ®’s which evaluate their arguments in opposite orders.

mon=Ak.m(ANf.n(Ax.k(f x)))

function-first

px:=Ak.kx
mon.=Ak.n(Ax.m(Af.k(f x)))

argument-first

A couple examples

Ak.Vy.ky
Ce

everyone

Ak.Ix. kx
Ce

someone

saw
e—-e—t

saw

Ak.Vy.ky
Ce

everyone

Ak.3x. kx
Ce

someone

saw
e—-e—t

saw

A couple examples

Ak.Vy.ky
Ce
everyone
Ak.Ix. kx
Ce
someone
Ak. ksaw
Cle—e—1t)
p
saw
e—e—t

saw

Ak.Vy.ky
Ce

everyone

Ak.3x. kx
Ce
someone
Ak. ksaw
Cle—e—1t)
P
saw
e—e—t
saw

A couple examples

Ak.Vy.ky
Ce

everyone

An.Ak.n(Ax.k(sawx))
Ce—-C(e—1)
Ak. ksaw
Cle—e—1t)
|0
saw
e—e—t

saw

Ak.Ix. kx
Ce

someone

Ak.Vy.ky
Ce

everyone

An.Ak.n(Ax. k(sawx))
Ce—-C(e—1t)

Ak. ksaw
Cle—e—1t)
o
saw
e—e—t

saw

Ak.3x. kx
Ce

someone

A couple examples

Ak.Vy.ky
Ce

everyone

Ak.3x. k (saw x)
C(e —1t)

T

An.Ak.n(Ax.k(sawx)) Ak.Ix.kx

Ce—-C(e—1) Ce
“ someone
Ak. ksaw
Cle—e—1t)
|0
saw
e—-e—t

saw

Ak.Vy.ky
Ce

everyone

Ak.3x. k (saw x)
C(e —1t)

T

AnAk.n(Ax.k(sawx)) Ak.Ix.kx
Ce—-C(e—1t) Ce

‘ . someone
Ak. ksaw
Cle—e—1t)
o
saw
e—e—t

saw

A couple examples

Ak.Vy.ky Am.Ak.m(Ay.3x.k(sawxy))
Ce Ce—-Ct

everyone ‘ -

Ak.3x. k (saw x)
C(e —1t)

T

An.Ak.n(Ax.k(sawx)) Ak.Ix.kx

Ce—-C(e—1) Ce
“ someone
Ak. ksaw
Cle—e—1t)
|0
saw
e—-e—t

saw

Ak.Vy.ky Am.Ak.Ix.m(Ay.k(sawxy))
Ce Ce—-Ct

everyone ‘

Ak.3x. k (saw x)
C(e —1t)

T

AnAk.n(Ax.k(sawx)) Ak.Ix.kx
Ce—-C(e—1t) Ce

‘ . someone
Ak. ksaw
Cle—e—1t)
o
saw
e—e—t

saw

A couple examples

Ak.Vy.Ax. k(sawxy)
Ct

/\

Ak.Vy.ky Am.Ak.m(Ay.3x.k(sawxy))
Ce Ce—-Ct

everyone ‘ -

Ak.3x. k (saw x)
C(e —1t)

T

An.Ak.n(Ax.k(sawx)) Ak.Ix.kx

Ce—-C(e—1) Ce
“ someone
Ak. ksaw
Cle—e—1t)
|0
saw
e—-e—t

saw

Ak.Ix.Vy.k(sawxy)
Ct

/\

Ak.Vy.ky Am.Ak.Ix.m(Ay.k(sawxy))
Ce Ce—-Ct

everyone ‘

Ak.3x. k (saw x)
C(e —1t)

T

AnAk.n(Ax.k(sawx)) Ak.Ix.kx
Ce—-C(e—1t) Ce

‘ . someone
Ak. ksaw
Cle—e—1t)
o
saw
e—e—t

saw

Corresponding notions in programs

> Reading: environment sensitivity, lexical scoping
> Writing: logging outputs, tracing the execution of a function
> Sets: denotational reification of nondeterminism

> Scope: control operators, aborting execution

An applicative evaluator

class Functor f => Applicative f where
pure :: a ->f a
(<%>) :: f(@a->b) >Ffa->fFfhb

eval :: Applicative f => Term -> f Int
eval (Con x) = pure X
eval (a :+: b) = pure (+) <*> (eval a) <*> (eval b)

eval (a :%: b) = pure () <*> (eval a) <*> (eval b)

Similar to enriching [-]. Another possibility, more closely related to the strategy

we’re using here, is having applicative combinators in the object language.

» (That’s how Haskell programmers roll.)

Reading and writing

Simultaneous effects

How to combine expressions from different effect regimes?

?

TN

(J, llingj1) Ar.sawrg
We R(e —1t)

John, a linguist i i
saw her

Let’s not invent new modes of combination for every combination of effects!

Applicative functors automatically compose

F(Gb)
F(Ga) W/)\W7a)
E
F(Ga— Gb)
/\
F(G(a— b)) F(G(a—b))— F(Ga— Gb)

‘@

F(G(a—b) - Ga— Gb)
o
®

G(a—b) —~ Ga—Gb

Composition with composition

Here’s what we get for the composition of Rand W, (RoW)a =r — (a,[t])

px:=Ar.(x,[]) me n:= Ar.(fx,j + k) where (f,j) =

(x, k) :

nr

Ar.(sawrgj, [lingj])

T

Ar.(j, [lingjl) Ar.(sawro,[])

(RoW)e (RoW) (e 1)
John, a linguist i z
saw her

R oW also implies ways to lift Ra and Wa into (R o W) a. Exercise: find them!

Taking the reverse composition

Here’s what we get for the reverse composition of Rand W, (RoW)a =r — (a,[t]):
px:=Ar.(x,[]) me n .= Ar.(f x,j + k) where (f,j) = mr
(x,k) == nr

Ar.(sawrgj, [lingj])

T

Ar.(j, [lingjl) Ar.(sawro,[])

(RoW)e (RoW) (e 1)
John, a linguist i z
saw her

R oW also implies ways to lift Ra and Wa into (R o W) a. Exercise: find them!

Some more composed applicatives*

Whenever F and G are applicative, F o G is too. Here, for Ro S:

px:=Ar.{x} men:=Ar.{fx|femr,xenr}

=p(px) =(p®)emon

This corresponds to what is standardly called Alternative Semantics.

And here, for SoR:

px:={Ar.x} men:={Ar.fr(xr)|femxen}

=p(px) =(pe)emen

4 Cf. Rooth (1985), Kratzer & Shimoyama (2002), Romero & Novel (2013), Charlow (2017).

Reading what’s been written

You might think that with the capacity to both push and pull things from a context,
we ought to be able to capture some kinds of anaphora.

8. Polly walked in the park. She whistled.
e ——
Write Read

Composing reading and writing actions

The reader/writer composition, with an entity-log:

(ReW)a::i=r - (a,[e])

And the corresponding pand ® operations again:

px=Ar.(x,[]) me n.=Ar.(fx,j + k) where (f,j) = mr

(x,k) :==nr

Not quite what we’re after: the modified state output by m is not passed in to n.

Failure to communicate

Ar. (and (whistle ro) (walkp), [p])

/\

Ar.(walkp,[p]) Am.Ar.(and (whistlerg) (mr)o, (mr)y)

PN E

Polly walked Ar.(and (whistle rp), [1)

/\

AnAr.(and (nr)o,(nr)1) Ar.(whistlerg,[1)
E PN
Ar.(and,[]) she whistled
o

and

The pronoun Reads and the proper name Writes, but they don’t coordinate.

Another construction

But this nevertheless seems like the right structure to manage this sort of effect,

and in fact, there is a second applicative for this type.

The State applicative: STa::=s — (a,s)

px = As.(x,5) me n:=As.(fx,s”) where (f,s’) = ms

(x,5") :=ns

px:=Ar.(x,[]) me n = Ar.(f x,j + k) where (f,j) = mr

(x,k) := nr

Crucially, the modified state s is passed into n.

Successful communication

As. (and (whistlep) (walkp), [p] + s)

/\

As. (walkp, [p] +5) An.s.(and (whistle (sp) g,5'), where (g, s') := ns

PN E

Polly walked As. (and (whistle sp), 5)

Ans.(and (ns)g, (ns);) As.(whistle sg, s)
E PN
As.(and, s) she whistled
o

and

The proper name Writes something the pronoun Reads. Always nice.

Indefinites®

True dynamic effects combine reading/writing with nondeterminism:

9. Polly walked in the park. She whistled.

10. Alinguist walked in the park. She whistled.

s > Polly left > [p] +s s > a linguist left > [c]+s

>Heim (1982), Barwise (1987), Rooth (1987), Groenendijk & Stokhof (1991), Muskens (1996), etc.

Nondeterministic compositions with ST

Here are the two obvious options: So ST and STo §

SToS:

px:={As.(x,5)}

me n:={As.(fx,s”), where (f,s") :=Fs, (x,s"):=Xs' | FEm, X € n}

SoST:
px:=As.({x},s)

men:=As.({fx|feF,xeX},s") where, (F,s') :=ms
(X,s") :=ns'

Problems with these compositions

However, independent of any issues with composition, neither of these types look

like they’re even up to the job
11. A linguist walked in the park. She whistled.

If a linguist :: s — ({e},s), then we’ll have to make a choice about which linguist

ends up on the state

[a linguist] # As. ({x | ling x}, [p] + s)

If a book she read :: {s — (a,s)}, then we’ll have to make a choice about how many

books there are before we know who she refers to

[a book she read] # {?\s. (x,[x] + s) | bookx, readmx}

Nondeterministic state applicative

Fantastically, there is again another applicative hiding in these combinations of

effects, but we what we need is to interleave them!

Da:.:=s— {(a,s)}

px::=As.{(x,5)} men:=As.{(fx,s") | (f,s') € ms,

(x,s") e ns'}

[a linguist] = As. {(x, [x] # s) | ling x}

[a book she read] := As.{(x,[x] + s) | book x, read sg x}

Dynamics in action

As. {(and (whistle x) (walk x), [x] + s) | ling x}

/\

As. {(walkx, [x] + s) | ling x} ?\n.P\s.{(and (whistle (s5)) g, 5') | (g,5') € ns}

T K

A linguist walked As. {(and (whistle sp),)}

/\

AnAs.{(andp,s) | (p,s') € ns} As.{(whistleso, s)}
E PN
As.{(and, s)} she whistled
K

and

40

Scope and monads

41

Scope interactions, refresher

Ak.Vy.Ax. k(sawxy)
Ct

/\

Ak.Vy.ky Am.Ak.m(Ay.3x.k(sawxy))
Ce Ce—-Ct

everyone ‘ -

Ak.3x. k (saw x)
C(e —1t)

T

An.Ak.n(Ax.k(sawx)) Ak.Ix.kx

Ce—-C(e—1) Ce
“ someone
Ak. ksaw
Cle—e—1t)
|0
saw
e—-e—t

saw

Ak.Ix.Vy.k(sawxy)
Ct

/\

Ak.Vy.ky Am.Ak.Ix.m(Ay.k(sawxy))
Ce Ce—-Ct

everyone ‘

Ak.3x. k (saw x)
C(e —1t)

T

AnAk.n(Ax.k(sawx)) Ak.Ix.kx

Ce—-C(e—1t) Ce
‘ . someone
Ak. ksaw
Cle—e—1t)
o
saw
e—e—t
saw

42

Too many indefinites

These derivations assumed ‘a linguist’ was a generalized quantifier: Ce

But in the dynamic section, we assumed ‘a linguist’ was a nondeterministic state
modifier: De.

If this presentation is an advertisement for modularity, it would certainly be nice to

hold onto this analysis of scope, even with ‘a linguist’ in a different type.

43

Building toward a solution

First step: note that the continuation applicative works just as well for “static” GQs
— Cre= (e — t) — t — as it does for “dynamic” GQs — Cpre = (e - Dt) - Dt

It’s straightforward to define a meaning for universal quantifiers that has this shape:

evOne .. Cpre = (e = Dt) - Dt

But how are indefinites, type De, supposed to scopally interact with it?

Flipping ® ::D(e — t) — De — Dt and applying it to aLing :: De gives:

(® aLing) ::D(e - t) - Dt

44

So close

This is so close to a dynamic GQ! If only ® had the following type, we’d be golden:

(e -~ Dt) - De —-Dt

Actual type, as a reminder:

D(e —~t) -~ De-Dt

Many applicatives do in fact support a function of this type. Many do not. The ones

that do are known as monads, and this function is given a special name:

>= .. Ma—- (a— Mb) - Mb

45

Categorically

For those following along yesterday, any type with a p and >= also has

well-behaved functions with these types

®..Fa—-(a—-b)—-Fb pwiF(Fa) — Fa
in view of the fact that p(f o m) = m>=f.6

© represents the functoriality of the F, and p is the monoid action taking F2 — F

6Mere functors can, like monads, interact with continuations, but require the Indexed Continuations
applicative. See Shan & Barker (2006), Barker & Shan (2014).

46

The nondeterministic state monad

What does this >= function look like for our D?

m>=k = As. [J{kxs' | (x,5") € ms}

47

Inverse scope derivation supported by ==

Ak.evOne (Ay.alLing >= (Ax.k(sawxy)))
Ak.As.Vy.3(True, s') € U{k(sawxy)s + x | ling x}

Ct
evOne Am.Ak.m(Ay.aLing 3= (Ax.k(sawxy)))
NkAs. {(Vy.3(T,s') € kys,s)} AmAk.m(Ay. U{k(sawxy)s + x})
Ce ‘
everyone

Ak.aLing >= (Ax.k(sawx))

Ak. U{k (sawx) s + x | ling x}

/\

Andk.n(Ax.k(sawx)) Akaling >= k

Ce—-Ce—-t Ce
‘ ‘ =
Ak. ksaw aLing
Cle—e—1) As{(x,s+ x) |lingx}
‘ o De
a linguist
saw
e—e—t

saw

48

Scope ambiguity at the end of the day

Statically:
V(Ax.3 (Ay.sawy x))
F(Ay.V(Ax.sawy x))

Dynamically:

evOne (Ax.aLing == Ay.n(sawyx))
aLing == Ay.evOne (Ax.n (sawy x))

49

Semantic primitives?
State can be decomposed into reading and writing actions (cf. Shan 2001):

Reada::=R—a Writea .= (a,R)

Read (aka R) and Write are adjoint functors (Write — Read). In fact, Read-ing and

Write-ing are adjoint in virtue of the curry-uncurry isomorphisms:

~ g — Readb
(a,R) = b~a—-R—-b

L 4 Riff RL is a monad (and LR a ‘comonad’)! What’s more, RL can compositionally
transform any monad M into a ‘super-monad’ RML with the functionality of R (e.g.,

reading), L (e.g., writing), and M (e.g., rnon-determinism).”

7This RL’s the State monad, and R[]L’s the State transformer (Liang, Hudak & Jones 1995) — RSL’s
none other than our D. LR is the Store comonad, useful for structured meanings (Krifka 1991, 2006).

AnderBois, Scott, Adrian Brasoveanu & Robert Henderson. 2015. At-issue proposals and appositive impositions
in discourse. Journal of Semantics 32(1). 93-138. https://doi.org/10.1093/jos/fft014.

Barker, Chris. 2002. Continuations and the nature of quantification. Natural Language Semantics 10(3).
211-242. https://doi.org/10.1023/A:1022183511876.

Barker, Chris & Chung-chieh Shan. 2008. Donkey anaphora is in-scope binding. Semantics and Pragmatics 1(1).
1-46. https://doi.org/10.3765/sp.1.1.

Barker, Chris & Chung-chieh Shan. 2014. Continuations and natural language. Oxford: Oxford University Press.
https://doi.org/10.1093/acprof:0s0/9780199575015.001.0001.

Barwise, Jon. 1987. Noun phrases, generalized quantifiers, and anaphora. In Peter Cardenfors (ed.), Generalized
Quantifiers, 1-29. Dordrecht: Reidel. https://doi.org/10.1007/978-94-009-3381-1_1.

Charlow, Simon. 2014. On the semantics of exceptional scope. New York University Ph.D. thesis.
http://semanticsarchive.net/Archive/2ImMWRjY/.

Charlow, Simon. 2017. The scope of alternatives: Indefiniteness and islands. To appear in Linguistics and
Philosophy. http://1ing.auf.net/Tingbuzz/003302.

Giorgolo, Gianluca & Ash Asudeh. 2012. (M, n, *): Monads for conventional implicatures. In Ana Aguilar Guevara,
Anna Chernilovskaya & Rick Nouwen (eds.), Proceedings of Sinn und Bedeutung 16, 265-278. MIT Working
Papers in Linguistics. http://mitwpl.mit.edu/open/subl6/Giorgolo.pdf.

https://doi.org/10.1093/jos/fft014
https://doi.org/10.1023/A:1022183511876
https://doi.org/10.3765/sp.1.1
https://doi.org/10.1093/acprof:oso/9780199575015.001.0001
https://doi.org/10.1007/978-94-009-3381-1_1
http://semanticsarchive.net/Archive/2JmMWRjY/
http://ling.auf.net/lingbuzz/003302
http://mitwpl.mit.edu/open/sub16/Giorgolo.pdf

Groenendijk, Jeroen & Martin Stokhof. 1991. Dynamic predicate logic. Linguistics and Philosophy 14(1). 39-100.
https://doi.org/10.1007/BF00628304.

Hamblin, C. L. 1973. Questions in Montague English. Foundations of Language 10(1). 41-53.

Heim, Irene. 1982. The semantics of definite and indefinite noun phrases. University of Massachusetts, Amherst
Ph.D. thesis. http://semanticsarchive.net/Archive/Tk0ZmYyY/.

Kiselyov, Oleg. 2015. Applicative abstract categorial grammars. In Makoto Kanazawa, Lawrence S. Moss &
Valeria de Paiva (eds.), NLCS’15. Third workshop on natural language and computer science, vol. 32 (EPIC
Series), 29-38.

Kratzer, Angelika & Junko Shimoyama. 2002. Indeterminate pronouns: The view from Japanese. In Yukio Otsu
(ed.), Proceedings of the Third Tokyo Conference on Psycholinguistics, 1-25. Tokyo: Hituzi Syobo.

Krifka, Manfred. 1991. A compositional semantics for multiple focus constructions. In Steve Moore &

Adam Wyner (eds.), Proceedings of Semantics and Linguistic Theory 1, 127-158. Ithaca, NY: Cornell University.

Krifka, Manfred. 2006. Association with focus phrases. In Valéria Molnar & Susanne Winkler (eds.), The
Architecture of Focus, 105-136. Mouton de Gruyter.

Liang, Sheng, Paul Hudak & Mark Jones. 1995. Monad transformers and modular interpreters. In 22nd ACM
Symposium on Principles of Programming Languages (POPL '95), 333-343. ACM Press.

McBride, Conor & Ross Paterson. 2008. Applicative programming with effects. Journal of Functional
Programming 18(1). 1-13. https://doi.org/10.1017/5S0956796807006326.

https://doi.org/10.1007/BF00628304
http://semanticsarchive.net/Archive/Tk0ZmYyY/
https://doi.org/10.1017/S0956796807006326

Muskens, Reinhard. 1996. Combining Montague semantics and discourse representation. Linguistics and
Philosophy 19(2). 143-186. https://doi.org/10.1007/BF00635836.

Potts, Christopher. 2005. The logic of conventional implicatures. Oxford: Oxford University Press.
https://doi.org/10.1093/acprof:0s0/9780199273829.001.0001.

Romero, Maribel & Marc Novel. 2013. Variable binding and sets of alternatives. In Anamaria Falaus (ed.),
Alternatives in Semantics, chap. 7, 174-208. London: Palgrave Macmillan UK.
https://doi.org/10.1057/9781137317247_7.

Rooth, Mats. 1985. Association with focus. University of Massachusetts, Amherst Ph.D. thesis.

Rooth, Mats. 1987. Noun phrase interpretation in Montague grammar, File Change Semantics, and situation
semantics. In Peter Gardenfors (ed.), Generalized Quantifiers, 237-269. Dordrecht: Reidel.
https://doi.org/10.1007/978-94-009-3381-1_9.

Shan, Chung-chieh. 2001. A variable-free dynamic semantics. In Robert van Rooy & Martin Stokhof (eds.),
Proceedings of the Thirteenth Amsterdam Colloquium. University of Amsterdam.

Shan, Chung-chieh. 2002. Monads for natural language semantics. In Kristina Striegnitz (ed.), Proceedings of the
ESSLLI 2001 Student Session, 285-298. http://arxiv.org/abs/cs/0205026.

Shan, Chung-chieh & Chris Barker. 2006. Explaining crossover and superiority as left-to-right evaluation.
Linguistics and Philosophy 29(1). 91-134. https://doi.org/10.1007/s10988-005-6580-7.

https://doi.org/10.1007/BF00635836
https://doi.org/10.1093/acprof:oso/9780199273829.001.0001
https://doi.org/10.1057/9781137317247_7
https://doi.org/10.1007/978-94-009-3381-1_9
http://arxiv.org/abs/cs/0205026
https://doi.org/10.1007/s10988-005-6580-7

	(Effectful) composition
	Reading and writing
	Scope and monads
	References

