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1. Introduction
During language acquisition, infants are faced

with the task of extracting complex regularities from
linguistic input, with little explicit feedback or training.
It is by now uncontroversial that adults, children, and
infants (Saffran et al. 1996b,a) alike display sensitivity
to statistical patterns in many types of sequential data,
even with fairly brief exposure. At a higher level of
abstraction, individuals of all ages are also sensitive
to a variety of grammatical patterns in sequential data
(Reber 1967, Marcus et al. 1999). Given this large
body of research demonstrating the lifelong human
capacity for implicit sequence learning, it is an im-
portant for cognitive science to establish exactly how
individuals come to recognize and utilize sequential
patterns.

Several studies have examined the developmen-
tal trajectory of statistical learning abilities. Saffran
(2002) tested adults and children for the influence of
predictive dependencies between adjacent items in an
artificial grammar, and found that while adults out-
performed children overall, the two groups showed
the same sensitivity to statistical relationships in the
data. Gómez (2002) found similar correspondences
between adults and 18 month old infants; both groups
learned to recognize statistical dependencies between
separated vocabulary items when the set of potential
interveners was large, but not when it was small. Fol-
lowing up on this result, Gómez and Maye (2005)
ran the same experiment on 12 and 15 month olds,
demonstrating that even with a highly variable set
of intervening elements, infants at 12 months failed
to notice the dependencies between nonadjacent vo-
cabulary items, but by 15 months, they performed
like adults. This age range corresponds to the time
in which children begin to show sensitivity to gram-

matical dependencies between separated morphemes
(e.g. ‘is quickly running’ vs. ‘can quickly running’)
(Santelmann and Jusczyk 1998).

These studies show that even relatively challeng-
ing sequence learning abilities — like tracking statis-
tics between nonadjacent items — are broadly similar
between children and adults, and demonstrate the util-
ity of investigating how statistical learning abilities
emerge and correlate with natural language acquisi-
tion. However, artificial language studies have largely
prescinded from questions concerning the learning
mechanism itself, focusing instead on the outcomes
of learning tasks.

One counterexample to this comes from (Romberg
and Saffran 2012), who presented infants with se-
quences of spatially-arranged targets, and measured
their eye movements in anticipation of upcoming stim-
uli. For half of the infants, all of the first eight targets
were presented in a single location, e.g. in the same
place on a screen to the left of the infant. For the
other half, six of the first eight targets appeared in that
location on the left, but the second and sixth targets
appeared on a screen to the right. Then for infants in
both groups, the ninth target was presented in that sec-
ondary location. For the first group, this was the first
appearance of an element on the right screen; for the
second, it was the third appearance of an element on
the right screen. They found that this low-probability
event had a larger influence on subsequent expecta-
tions for the infants with variable early exposure than
it did for the infants with uniform exposure. That is,
infants in the uniform condition continued to look to
the left screen in anticipation of the tenth trial, as they
had before the anomalous event on the right, but in-
fants in the probabilistic condition were more likely
to look to the unlikely right screen on the tenth trial
than they had been before. The authors concluded
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that the infants with a probabilistic model of the target
location were more sensitive to prediction error, and
more willing to adapt their expectations in response
to unlikely events.

By monitoring infants’ expectations about where
the next itemwould appear, Saffran and Romberg were
able to track the differential effect that low-probability
items had on the two experimental groups throughout
the learning. These expectations, as revealed through
eye movements, provide the first glimpse into how
particular data shaped the infants’ underlying language
model in real time.

Quite apart from infant artificial language studies,
expectations have come to play a major explanatory
role in several theories of online language compre-
hension. These theories are motivated by a variety of
robust processing effects, primarily from self-paced
reading and eye-tracking paradigms. For instance, it
is well-established that the more predictable a word
is, the faster it is read (e.g., Ehrlich and Rayner 1981,
Van Berkum et al. 2005, DeLong and Urbach 2005).
Similarly, visual world studies have shown time and
again that both linguistic and extralinguistic context
can lead listeners toward one interpretation of a struc-
turally ambiguous phrase, well before the phrase is
even completed (e.g. Trueswell et al. 1994, Tanenhaus
et al. 1995, Altmann and Kamide 1999).

Results like these strongly suggest that individu-
als use available contextual and linguistic information
preemptively zero in on the expected linguistic signal.
Hale (2001) offers a model of incremental sentence
parsing, according to which listeners maintain at all
times a probability distribution over the possible com-
pletions of a partially revealed sentence. Building
on this model, Levy (2008) argues that processing
boosts/costs should be understood in terms of the rela-
tive redistribution of probability mass that new words
require. Words that are already highly expected will
not require any update to the subsequent predictions;
but unexpected will require re-ranking of the competi-
tors for the ultimate unfolding production. Taking this
further, Pickering and Garrod (2013) have recently
argued that internal forward modeling (i.e. making
guesses about upcoming events) provides the substrate
for all of human communication, including compre-
hension, production, and fluent dialogue.

Online predictions also play a central role in

many computational learning models (e.g. Rescorla
and Wagner 1972, Elman 1990). Chang et al. (2006)
describe a learning algorithm that takes every
opportunity to make predictions about upcoming
material based on context and its current model of
the sequence structure. Incorrect guesses spur the
learner to adjust its underlying model, incrementally
narrowing the gap between the predictions and the
input. Jaeger and Snider (2013) outlines a similar
procedure intended to capture the dynamics by which
conversants adapt their own language models to
converge on a common way of talking. This, they
argue, accounts for the correlation between a syntactic
structure’s unpredictability and its effectiveness in
priming subsequent discourse (Fine and Jaeger 2013).

One important aspect of these expectation-based
learning and processing models is that they model the
listener as considering predictions not just about the
next word in an utterance, but about the entire future
of the sentence. If these models accurately reflect
the strategy of human learners, then it may be that
making long-distance predictions — and attending to
the subsequent long-distance feedback — is essential
for grammar acquisition, especially for the acquisition
of dependencies between nonadjacent lexical classes.

To address the extent to which sequence learning,
and in particular context free grammar learning, is
facilitated by ambitious prediction, I conducted an
artificial language learning experiment. Participants
watched as one cartoon character told a story to an-
other, in a language that only the two characters un-
derstood. They were invited to imagine themselves
as the character hearing the story. Often, this charac-
ter would anticipate what the storyteller was going to
say, and interrupt as if finishing the next chunk of the
storyteller’s sentence. On these occasions, the partici-
pants, playing the role of the interrupter, were invited
to predict the next segment of the sentence, on the
basis of the sentences they had seen before.

Given this setup, participants were divided into
four groups. Half of the participants were asked to
predict just the next word in the sentence, at the inter-
ruption point. The other half were asked to predict the
next three words. Further, half of the participants were
exposed to a language with relatively simple gram-
matical patterns, and half to a language with more
complicated structures, of the sort found in natural
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languages. If predicting well into the future is im-
portant for learning complex structural patterns, as is
commonly assumed by prediction-based learning al-
gorithms, then we should expect to see an interaction
between language complexity and prediction length.
Participants encouraged to make longer predictions
should prove better language learners, when the lan-
guage to be learned contains complex structural de-
pendencies, but not when it does not.

This experiment follows the lead of Romberg and
Saffran (2012) in tracking online predictions through-
out learning. The technique has several advantages.
First, participants’ predictions provide a window into
their internal model of the language. We can see not
merely which sentences an individual will recognize
as (comparatively) likely, given some training data,
but which sentences an individual will generate, using
whatever patterns they have abstracted from the data
so far. Second, as participants’ understanding of the
language changes, so will their predictions. Taken
together, these two points give rise to a new analyti-
cal possibility: for any particular window of analysis,
say the middle third of the participants guesses, we
can use their predictions as a sample of the language,
as they understand it at that time. From those sam-
ples, we can reconstruct pictures of the most likely
underlying grammars that would generate those pre-
dictions. So where standard artificial language learn-
ing paradigms offer a single snapshot of participants’
ability to discriminate grammatical from ungrammat-
ical sequences at the end of learning, this prediction
paradigm offers a series of snapshots of participants’
approximations of the correct grammar, as they change
over the course of learning.

2. Theoretical Background

2.1. Artificial Language Learning
2.1.1. AGL and SRT Paradigms

Sequence learning experiments generally follow
one of two experimental paradigms: Artificial Gram-
mar Learning (AGL) or Serial Reaction Time (SRT).
In a typical AGL experiment (e.g. Reber 1967), par-
ticipants are exposed to sequences of letters, syllables,
shapes, scenes, tones, timbres, etc. that unbeknownst
to themwere generated by a particular grammar. After

exposure, participants are presented with further novel
sequences that conform to the rules of the grammar
and similar sequences that do not. Very often partici-
pants can distinguish the novel grammatical sequences
from the similar but ungrammatical sequences at lev-
els greater than chance, suggesting they have learned
something of the underlying statistical or algebraic
structure of the language.

In SRT studies (e.g. Nissen and Bullemer 1987),
participants are instructed to respond to sequentially
presented stimuli, usually by pressing a specific
button for each stimulus item, or by clicking a corre-
sponding location on a screen. As in AGL studies, the
stimulus locations are typically generated by a single
grammar (typically less complex than in the AGL
paradigm, though see Misyak et al. 2010, de Vries
et al. 2012). Over the course of the experiment,
participants acquire some knowledge about the
regularities of the input, and respond more quickly to
grammatical/predictable sequences of stimuli than to
ungrammatical/unpredictable sequences (for reviews,
see Clegg et al. 1998, Abrahamse et al. 2010).

Chang et al. (2012) point out that the same
brain regions that support language processing
also appear to support AGL and SRT behaviors,
including Broca’s Area (De Vries et al. 2010: Opitz
and Friederici (2004)). What’s more, functional
imaging has revealed similar patterns of activation
in and around Broca’s Area during violations of
natural language syntax and that of an artificial
grammar as part of an AGL task (Petersson and
Hagoort 2012). Christiansen et al. (2010) observed
impairments in AGL performance in agrammatic
aphasics. From these and other similar results, Chang
et al. conclude that AGL and SRT tasks depend on
the same mechanisms that underlie general linguistic
competence and language learning.

2.1.2. Language Complexity
The complexity of a language is usually character-

ized by the kinds of formal grammars that can generate
it. Chomsky (1956) famously described a hierarchy
of formal grammars in terms of their respective ex-
pressive capacities. For natural animal languages, the
most important distinction that the Chomsky hierar-
chy makes is between what are called Finite State
Automata and Context Free Grammars.
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Finite State Automata are simple machines con-
sisting of a finite set of states, including one or more
predefined initial and final positions, and a finite set
of transition rules that push the grammar along from
one state to the next. Each of the state transitions is
associated with a symbol, generally thought of as a
vocabulary item in the grammar being modeled. Thus
as the machine transitions from state to state, it emits
(or consumes) an element in the lexicon of the gram-
mar. The sentences of the language then correspond
to the different paths the machine may take to get from
the first of its states to the last.

Automata like this can generate (equivalently, rec-
ognize) many different patterns, including patterns
with infinitely many specific tokens (for instance, all
strings consisting of an a followed by any number
of bs and then another a), and even many aspects of
natural languages. Other natural language patterns,
however, are beyond their reach. The most famous ex-
ample is the set of sentences of the form anbn, where
xn signifies n repetitions of the item x. In English, for
example, any sentence of the form ‘[the wolf]naten’
is grammatical (‘the wolf ate’, ‘[the wolf the wolf ate]
ate’, ‘[the wolf [the wolf the wolf ate] ate] ate’, etc.).
Patterns like these require the grammar one way or
another to keep track of which words appeared in the
first half of the sentence, so that they can be appropri-
ately paired with words in the second half. These sorts
of pairings are called long-distance dependencies, and
they in part motivate a more expressive approach to
natural language modeling.

The simplest class of grammars that can capture
anbn dependencies are called Context Free Grammars.
One way to define a CFG is to start with an FSA and
supplement it with a certain kind of very limited mem-
ory store called a pushdown stack. As the CFG moves
through its abstract states, emitting items along the
way, it can additionally add or remove items from
an internal list that it maintains. This provides just
enough capacity to effectively match the as with their
corresponding bs. But there is another more common
way of representing CFGs that doesn’t rely on the no-
tion of a memory. Instead, states are represented as
nodes in an abstract tree, and transition rules deter-
mine how each node can unfold into subtrees. In this
manner, the grammar may start in the middle of a pat-
tern, so to speak, and emit the left and right portions

of the string simultaneously, before dropping into a
new “center-embedded” subtree. From this perspec-
tive, what distinguishes a CFG from an FSA is the
ability to recurse into subpatterns between two lexical
elements.

The point for the study of naturally-occurring com-
munication systems is that different syntactic patterns
place different lower bounds on the types of machines
that might execute them. As a result, establishing
that human languages recognize and utilize center-
embedding schemes, for example, also establishes that
the human language processing mechanism should
have at least the computational power of a context free
grammar. Obversely, if non-human animals do not
exploit such patterns, it suggests particular limitations
in the way they organize and manipulate sequential
data.

2.1.3. Complexity and Learnability
A question that many sequence learning experi-

ments have sought to address is to what extent the
formal complexity of a particular pattern or language
influences its learnability. As mentioned in the pre-
vious section, human languages support dependen-
cies that cannot be expressed by finite state grammars.
Many researchers believe that naturally-occurring mu-
sical systems likewise exceed the finite-state capacity
(e.g. Lerdahl and Jackendoff 1983, Rohrmeier 2011).
Nevertheless, it remains an open question what the
upper limit is on people’s capacity to absorb purely
syntactic patterns from mere exposure, without ex-
plicit instruction.

For simple finite state automata, as well as prob-
abilistic automata with only first-order conditional
dependencies (either backward or forward), count-
less AGL and SRT experiments have established that
adults can distinguish grammatical from ungrammat-
ical sequences after relatively brief exposure (for an
overview, see Pothos 2007). More surprising, infants
are likewise sensitive to low-order statistical regular-
ity (e.g. Saffran et al. 1996a, Aslin et al. 1998, Maye
et al. 2002), as are several primate and bird species
(e.g. Fitch and Hauser 2004, Gentner 2007).

Non-adjacent dependencies present a different
story. Some kinds of dependencies are susceptible to
implicit learning, including token identity (Gomez
et al. 2000, Marcus et al. 1999) and more generally
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perceptual similarity (Creel et al. 2004, Gebhart et al.
2009). However, arbitrary non-local associations
between stimulus items, of the sort found in natural
languages, have generally eluded attempts at implicit
learning. Perruchet and Rey (2005), Friederici et
al (XXXX), Hochmann et al. (2008), and de Vries
et al. (2008) all exposed individuals to properly
context-free language fragments, but participants
did not successfully distinguish grammatical test
sequences from similar but ungrammatical sequences.

However, Gómez (2002) discovered that simpler
non-adjacent dependencies were learned when the
intervening material was sufficiently variable. That
is, when faced with a larger vocabulary and therefore
a larger overall number of unpredictive first-order
transitions, Gomez’s participants began to track the
much more predictable second-order associations.
This suggests that greater statistical variety in the
sequence data may actually encourage people to
entertain more complex patterns that they would
not otherwise bother with. Consonant with this, a
few recent AGL studies have reported success with
context-free and even context-sensitive patterns (Lai
and Poletiek 2011, Uddén et al. 2012, de Vries et al.
2012, Rohrmeier et al. 2012), either by substantially
increasing the duration of exposure (Lai and Poletiek
2011, Uddén et al. 2012), or by increasing the
vocabulary, sequence length, and/or structural variety
of the languages being learned (de Vries et al. 2012,
Rohrmeier et al. 2012).

2.2. Expectation-Based Learning
One of the themes running through computational

and cognitive neuroscience in the last quarter century
is a view of the brain as a finely-tuned prediction ma-
chine, a “bundle of cells that supports perception and
action by constantly attempting to match incoming
sensory inputs with top-down expectations or predic-
tions” (Clark 2013). On this view, the primary activity
of the brain consists in using sensory data, statistical
information, and abstract, representational, or gener-
ative models of the world to make predictions about
what will happen next.

In line with this general trend in cognitive science,
syntactic prediction error has been argued to play an
important role in manymodels of language processing.
Here, ‘syntactic prediction error’ is taken to refer to

the deviation between what words are observed and
what words were expected to be observed prior to the
observation. A growing body of research indicates
that online processing difficulty is correlated with this
sort of prediction error (for recent presentations of the
program, see Federmeier 2007, Kamide 2008, Kutas
et al. 2011, Levy 2013).

For instance, Hale (2001) and following him Levy
(2008) hypothesize that individuals use stochastic con-
text free language models to assign probability distri-
butions to sentences in real time. According to the
model, at each word of an unfolding sentence, an indi-
vidual will re-weight all of the possible syntactic struc-
tures that might have generated the observed words as
an initial segment, assuming one of these (hopefully
the most likely) will correspond to the actual sentence
once completed. They argue that garden path effects
should be understood as points in a sentence at which
a word is particularly unexpected, and therefore forces
a substantial re-distribution of probability mass over
possible continuations.

In a separate, but related line of research, Hale
(2006) proposed that processing time should be pro-
portional not (only) to the surprisal at a particular
word (essentially a measure of conditional probabil-
ity), but to the contribution of a word in reducing
uncertainty about the future of the sentence. That is,
certain words will provide a great deal of information
about the future of the sentence, shifting the nature of
the implicit probability distribution individuals main-
tain over possible continuations.

The operative assumption in of these sorts of
information-theoretic processing models is that both
speakers and comprehenders are in the business of
constantly surveying a large collection of potential
sentences, and ranking them in terms of their
compatibility with what has been understood so far.
Some models calculate rankings in terms of rich
probabilistic context free grammars (Jurafsky 1996,
Hale 2006, Levy 2008, Linzen and Jaeger 2014);
others in terms of part-of-speech sequences (Frank
2010, Blache and Rauzy 2011); still others direct
lexical and collocational statistics (Frank 2013); or
some combination of these (Roark et al. 2009, Wu
et al. 2010). But one way or another, they all aim
to explain sentence processing costs in terms of the
projected future possibilities for the sentence.
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Increasingly, researchers have also begun to em-
phasize the role of prediction and feedback in language
acquisition and adaptation, in addition to online sen-
tence processing. Trueswell et al. (2013) propose
that children make very specific predictions about the
referents of lexical items, and only revise those predic-
tions upon evidence to the contrary. Similarly, Mani
and Huettig (2012) identify correlations between chil-
dren’s language production ability and their ability to
predict upcoming words in sentences they hear. Con-
way et al. (2010) found that individual differences in
implicit learning abilities were correlated with how
well an individual is able to use word predictability
to guide language perception. Change et al. (2006;
2012), Pickering and Garrod (2013), and Jaeger and
Snider (2013) all argue that syntactic abstraction and
sentence production crucially depend on learners’ pre-
dictions about upcoming words during comprehen-
sion. In fact, according to the expectation-adaptation
model adopted by Fine and Jaeger (2013) and Jaeger
and Snider (2013), even adult conversants use predic-
tion errors to rapidly and continuously adjust their
underlying language models, so as to converge on a
shared probabilistic grammar that maximizes mutual
syntactic predictability.

Despite the overwhelming evidence that listeners
make incremental predictions about upcoming syntac-
tic structure, and the emerging view that such predic-
tions drive both short- and long-term implicit learning,
there is very little experimental language learning re-
search that engages directly with expectation-based
learning. Misyak et al. (2010) designed an SRT task
around triplets of nonce words, drawn from a gram-
mar with probabilistic dependencies between the first
and last words of the triplets. Before each trial, par-
ticipants were presented with two word candidates for
each position of the upcoming triplet, and instructed
to click on each word that they heard as soon as they
had heard it. Of course, participants could boost their
reaction times by anticipating later words on the basis
of earlier ones, and moving the mouse to the expected
word in advance. They found that (some) participants’
reaction times to words in the third position decreased
over the course of the experiment, indicating that they
had picked up on the non-adjacent dependencies.

Alexandre (2010) conducted an SRT experiment
based on a properly context free “palindrome

language” of stimulus locations (e.g. XYZZYX,
XWYWWYWX, etc.). He compared the reaction
times of participants to the surprisal values that
would be predicted by various language models. He
found that the reactions of participants were equally
well approximated by an SRN and a PCFG trained
on the same sequential data, though not very well
approximated by n-gram models or Markovian mod-
els. Similarly, Gureckis and Love (2010) designed
two different artificial languages, one well-suited
to the learning mechanism of a Simple Recurrent
Network and the other well-suited to that of a Linear
Associative Shift-Register. They then trained the two
machine learners on the two languages, and compared
the models’ prediction accuracies at various points in
the input sequences with the response times of human
participants. Reaction times were better modeled
by the simple LASR learning model than the more
powerful SRN.

Each of these recent studies approximated
sequence item predictability with an online response
time measure, and exploited the SRT paradigm’s
access to response data throughout the experiment
to draw conclusions about how participants learned
the respective languages. In effect, they presuppose
that participants consistently anticipate upcoming
stimuli, and then — from an approximate measure of
those anticipations — attempt to reverse-engineer a
learning algorithm that would predict the empirical
pattern of anticipations.

The present investigation begins from the same
assumptions about anticipation, and likewise seeks
to record some measure of participants’ trial-by-trial
learning trajectories. But where the previous studies
took expectations for granted, exploiting anticipatory
and reactionary behavior as indirect measures of lan-
guage mastery, this study investigates the role that
expectations themselves play in the learning process.
To this end, I ask whether expectations themselves can
be manipulated to facilitate different sorts of grammar
learning.

For instance, the information-theoretic processing
models introduced above all require individuals to
compute the probabilities of many potential complete
sentences compatible with some observed partial se-
quence. Surprisal models, which identify the process-
ing cost of a word with the statistical predictability of
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that word given its preceding linguistic context, implic-
itly marginalize over all possible complete structures
that would yield that word at that location. Entropy-
reduction models are more explicit about the vast de-
gree of forward modeling they assume; to compute the
relevant quantity of information provided by a word
in context, one should know not just the probabilities
of the next potential items, but the shape of the entire
probability distribution over all possible completions
of the sentence.

Linzen and Jaeger (2014) argue on the basis of self-
paced reading time data that these entropy-reduction
values based on deep, farsighted predictions model be-
havioral processing cost more accurately than simple
conditional probabilities or shallow predictions based
only on the probabilities of the next (several) items
(cf. Roark et al. (2009) and Frank (2013)). So, on the
one hand, prediction error is increasingly recognized
to figure prominently in language learning and adap-
tation. On the other hand, emerging evidence from
computational models of online sentence processing
suggest that individuals may routinely anticipate a
great deal of linguistic material, many words into the
future of the sentence.

Taken together, this suggests a natural hypothe-
sis for expectation-based models of language learn-
ing: mastering complex sequential patterns, especially
those with natural-language-like long-distance depen-
dencies, may depend on the ability of individuals to
make long-distance predictions about downstreamma-
terial. That is, given the importance of prediction
error in sequential learning, and the importance of
fine-grained prediction in real-time sentence compre-
hension, we might wonder about the interaction of
these phenomena, i.e. whether deep downstream pre-
diction plays an important role in language learning. I
hypothesize that it does, and the role it plays is in pro-
viding feedback on potential linguistic patterns that
span multiple intervening elements. More specifically,
I hypothesize that predictions about faraway items fa-
cilitate learning the recursive context free patterns that
characterize natural human languages.

If complex pattern learning requires long-distance
prediction, then one explanation for the frequent fail-
ure of participants to notice long-distance associations
in artificial language learning tasks (see discussion
in §2.1.3) could be that they are simply not making

predictions far enough into the future. As a result,
(assuming that individuals only utilize the parts of
the input that they make predictions about) they only
receive data about adjacent transitions, and thus only
formulate, test, and confirm hypotheses about local
dependencies.

Rohrmeier et al. (2012) reason similarly. They con-
sider the hypothesis that long-distance dependencies
go undetected in laboratory environments because the
grammatical patterns are unnaturally simple. Putting
this to the test, they found that in a relatively standard
AGL experiment based on more ecological context-
free structures, participants did show implicit (though
not explicit) sensitivity to long-distance dependencies
in the test sentences. Likewise, Thompson and New-
port (2007) created artificial languages with natural-
istic syntactic properties, including optional phrases,
repeated phrases, moved phrases, differentially-sized
lexical categories, and combinations thereof. Dis-
crimination ability improved across participants as
the languages increased in complexity. Gómez (2002)
too found that increased trigram variability facilitated
non-adjacent dependency learning.

Framed in terms of prediction error, these results
show that without sufficient complexity and variety in
the language, participants only bother making predic-
tions about local dependencies. The following experi-
ment tests this hypothesis by encouraging participants
to make explicit predictions of varying lengths while
learning either a simple (finite state) or complex (con-
text free) language.

To the best of my knowledge, this is the first ex-
periment to attempt to directly manipulate prediction
behavior, as a potential causal factor in sequence
learning. Pitting expectations against learning in
different grammatical environments brings theories
of information-theoretic language processing head
to head with theories of expectation-based language
learning, which brings us closer to a robust under-
standing of how synchronic online performance
models and diachronic developmental learning
models are related.

In addition, eliciting predictions throughout the ex-
periment offers a rich window into the development of
language proficiency. As with SRT studies, this con-
tinuous measure provides some indication of the time
course of learning in different experimental conditions.
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But unlike the SRT paradigm, sentence predictions
also provide a kind of production data. So we can
say with some confidence not just whether a given
sequence was likely to be recognized by a given par-
ticipant at a given stage of the experiment, but which
sequence a participant was likely to generate at a given
stage.

Thus, regardless of the particular results to this
preliminary investigation, the present design offers
two sources of rich empirical data that should be of
interest to the experimental language learning commu-
nity: direct access to online expectations, and iterative
sequential productions throughout the learning period.

3. Experiment
The goal of Experiment 1 was to determine

whether the acquisition of complex linguistic patterns
could be facilitated by encouraging individuals to
make predictions about larger stretches of upcoming
items. To this end, participants were presented with
a number of sentences drawn from one of two syn-
thesized languages. The first language was generated
by a simple finite-state grammar with no recursion.
The second language was generated by a context-free
grammar with up to three levels of center-embedding
recursion. After sufficient exposure, participants were
asked to make predictions about parts of sentences
that they hadn’t yet seen. Some participants were
asked to predict a single word; others three words.
According to the reasoning of §2.2, those participants
encouraged to predict longer chunks of the sequences
thereby received more implicit feedback about the
language, and crucially more feedback about the
connections between non-adjacent components of the
grammar.

As a result, an interaction was predicted between
grammar complexity and prediction window length.
For those participants dealing with the finite-state
grammar, prediction length should not make a dif-
ference, since these language satisfy the first-order
Markov assumption: p(wi | wi−2, wi−1) = p(wi |
wi−1). But for those participants dealing with the
context-free grammar, prediction length matters, if
the hypothesis considered above is correct. Longer
prediction windows should encourage participants
to formulate and test hypotheses about the structure

of the language that exceed the expressive power of
finite-state models, and crucially exceed the hypothe-
sis space available to participants making predictions
about first-order transition probabilities alone.

3.1. Method
3.1.1. Participants

122 participants were recruited via Amazon Me-
chanical Turk. Participants received $5.00 dollars for
participation. All participants provided informed con-
sent prior to the experiment.

3.1.2. Stimuli and Materials
Participants were randomly assigned to one of

four groups. Half of the participants were exposed to
sequences generated by a finite-state grammar, and
half to sequences generated by a recursive context-free
grammar (conditions F and C, respectively). Half of
each of those groups were asked to predict a single
word in each sequence, and half were asked to predict
three words (conditions 1 and 3, respectively).

3.1.3. The Grammars
The finite state language was based on the BRO-

CANTO language used in Opitz and Friederici (2007).
It is specified in Figure 1a. The language designates
six categories of terminals, glossed here for conve-
nience with familiar parts-of-speech labels. Three of
the categories (P, D1, and D2) are associated with a
single word, and so require no generalization. The
other three categories (N, V, and A) were each equally
likely to be realized as one of two possible words.
Mastering the grammar requires identifying the equiv-
alence of these words with respect to the sequential
patterns in the data.

Lexical items from Thompson and Newport
(2007): roughly equivalent with respect to mean-
ingfulness (Archer 1960), and all in the mid-range
of phonotactic neighborhood density (Vitevitch and
Luce 1999), i.e. all medium-probable nonwords.

The context free language was based on the left-
branching, center-embedding grammar of Rohrmeier
et al. (2012). It is specified in Figure 1b. Again, the
language designates six categories of terminals, three
of which comprise a single word, and three of which
comprise two equally probable words.
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S → NP TP
TP → VP (PP)
VP → V (A) | V (A) NP
NP → D1 N | D2 A N
PP → P NP
N → "daz" | "mer"
V → "lev" | "jes"
A → "tid" | "rud"
P → "nav"

D1 → "sib"
D2 → "zor"

(a) Finite state grammar
based on Opitz and
Friederici 2007

S → NP VP
VP → V1 | V2 NP
NP → N D1 | CP N D2
CP → VP R
V1 → "daz" | "mer"
V2 → "lev" | "jes"
N → "tid" | "rud"
R → "nav"

D1 → "sib"
D2 → "zor"

(b) Context free grammar
based on Rohrmeier et al.
2012

Figure 1: Participants were exposed to, and made predictions
regarding, sentences in one of two artificial languages. (a)Half of
the participants saw sentences generated by a finite state grammar
with no long-distance dependencies. (b) The other half saw
sentences generated by a context free grammar with multiple
layers of potential recursive embedding.

The two languages have the same nine-word
vocabulary, the same number of lexical categories,
and essentially the same number of production rules.
Both have been shown to be (implicitly) learnable
in standard artificial grammar paradigms (Opitz
and Friederici 2007: Rohrmeier et al. (2012)). The
primary difference between them is that the former is
finite, and the latter infinite as a result of its recursive
NP→ CP→ VP→ NP productions.

3.1.4. Stimuli
Rohrmeier et al. exhaustively enumerated all sen-

tences up to three levels of embedding, and then ran-
domly selected 25 1-layer structures, 90 2-layer struc-
tures, and 81 3-layer structures, for a total of 195 differ-
ent sequences.1 The CFG stimuli used in the present
study are composed of these same 195 sequences,
modified slightly to include terminals representing
the D1 and D2 categories, which were not present in
Rohrmeier’s et al. language.

For each length n sequence of the CFG language
adapted from Rohrmeier et al., a length n sequence
was randomly selected from the FSA language in Fig-
ure 1a. Thus the stimuli in the two conditions con-
sisted of the same number of length n sentences, for

1These figures combine the sentences generated for training
purposes with those generated for testing

3 ≤ n ≤ 11, and thus the same number of sentences
overall.

3.1.5. Stimulus Rendering
The entire experiment was conducted over the in-

ternet, in a browser window of the participant’s choice.
Each trial consisted of a single sentence, revealed re-
vealed one word at a time, from left to right, as shown
in Figure 1b. Trials were separated by 1 second of
inactivity. During the presentation of each sentence, a
new word was revealed every 250 ms, until the predic-
tion point, if there was one, or the end of the sentence
otherwise. When predicting, participants selected ei-
ther one or three words from a list of the available
vocabulary items. No time limits were placed on pre-
diction.

3.1.6. Procedure
Participants were informed that they would partic-

ipate in a discourse between two cartoon characters.
In the experimental conceit, one of the two characters
was to tell the other one (played by the participant) a
story. The story would be in a language the characters
understood (but the participant obviously did not). At
various points, the participant’s character would an-
ticipate the storyteller’s next words, and interrupt the
storyteller in excitement, much the way that people
sometimes finish each other’s sentences when they
know what’s coming.

Given this setup, participants first witnessed the
storyteller utter 34 sequences, each between 3 and
5 syllables in length, to get some feel for the basic
constituents of the language. Lai and Poletiek (2011)
found that staging the input in this fashion — struc-
tures with no or limited recursive embedding before
structures with multiple layers of hierarchical depen-
dency— improved implicit acquisition of context free
languages.

After this initial exposure to the language, partici-
pants transitioned into the second phase of the experi-
ment, in which they were required to make predictions
about various segments of the sentences they saw. On
a prediction trial, participants saw an initial vertical
red bar at the point in the sentence where the “inter-
ruption” was to occur (see Figure 2). If the sentence
was 9 words long, for example, the interruption point
might occur after the fourth word. At this point, partic-
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Figure 2: Schematic of a trial dynamic. At the beginning of every
trial, a speech bubble appeared above the elephant, together with
a line indicating the upcoming point of "interruption". One word
at a time would appear in the elephant’s speech bubble until
the line was met, at which point a speech bubble appeared next
to the cow, indicating the participant was to make a prediction
about the next word (or words). The participant clicked on the
buttons below the characters to make their selection(s). After
they guessed, the elephant would react, and then finish its own
sentence.

ipants would have to select whichever word or words
(depending on the condition) they expected to come
next in the sentence.

Once the participant made his or her selection, the
storyteller reacted either positively or negatively, to in-
dicate whether the prediction was correct or incorrect.
Only exact word-for-word matches were considered
correct for the purposes of feedback, though in fact
on most trials, several of the choices could have led to
“grammatical” sentences. For instance, given the finite
state language in Figure 1a, there are two grammatical
candidates for the first missing word after ‘tid’ in Fig-
ure 3, corresponding to the two parses shown below.
The unknown material could constitute a PP, in which
case the missing word would be ‘nav’, or it could
constitute a NP, in which the missing word would be
‘zor’. In addition to this structural uncertainty, partici-
pants also had to deal with lexical uncertainty. That is,
even after correctly guessing that ‘nav’ should follow
‘tid’ (and therefore that the following word should be
‘sib’), the final word could be either ‘daz’ or ‘mer’,
as both are perfectly acceptable Ns in that syntactic
context. For the purposes of scoring the participants
answers, any word of the appropriate lexical category
was counted as correct.

Nomatter what the participant guessed, after react-

ing, the elephant finished its sentence so that partici-
pants saw the intended words, as well as the remainder
of the sentence that followed the material they were
asked to predict.

This process was repeated until the story was com-
plete, i.e. until all 195 stimulus sentences had been
seen. Altogether, each subject provided 165 predic-
tions, one for each sentence length 6 or longer and a
quarter of those of length 5.

3.2. Results
3.2.1. Data Quality

Four of 122 participants, one from each condi-
tion, were recorded as answering correctly on more
than 90% of the 165 trials. Given the indeterminacy
inherent in the task, even with perfect knowledge of
the grammar from the very beginning, performance
at this level is all but impossible. These participants
were excluded from the analysis. All other partici-
pants showed overall accuracies within three standard
deviations of the mean, and no other measure was
taken to exclude data. This left 118 participants.

Each of these participants completed 165 trials,
some predicting three words per trial, others predict-
ing just one. To maintain evaluation parity between
the conditions, only the first prediction of each trial
was scored. As explained in the preceding section, if
the participant selected a word of the same category
as the actual word in the sequence, their prediction
was counted as correct. Otherwise, it was counted as
incorrect. For each of the 118 participants, all 165
predictions were included in the analysis.

3.2.2. Final Performance
I hypothesized that a longer prediction window

would facilitate context-free learning to a greater ex-
tent than it would finite-state learning. To test this
hypothesis, I first restricted attention to a final subset
of trials, after some amount of learning could be seen
to take place. In this design, stimuli were not divided
into separate training and test sets, and performance
was assessed continuously throughout the experiment.
Thus, it was planned in advance to treat the first 100
trials as a period of learning, leaving the last 40% of
the stimuli for assessment.

The accuracies of participants in this later stage of
the experiment are shown in Figure 4. On each trial,
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Figure 3: Possible continuations of ’sib daz jes tid X X X’, according to the finite state grammar in Figure 1a. Participants were
counted as correct if they guessed any word of the appropriate category. For instance, if the actual sequence was ’sib daz jes tid nav
sib daz’, credit was assigned for either ’daz’ or ’mer’ in the final slot.

there were nine word choices available to participants,
so a random guessing strategy provides a baseline of
around 11%. Nearly all participants exceeded this
baseline, and average accuracies in each of the four
conditions were well above this chance level, ranging
from 23.3% to 32.2%.

For both languages, participants asked to predict
just the next word in the sentence outperformed
those asked to predict the next three words. However,
the magnitude of the difference varied between
the languages. For those learning the finite state
language, one-word prediction-window participants
were 38% more likely to guess correctly than
three-word prediction-window participants. But for
those learning the context free language, one-word
participants were only 9% more likely to guess
correctly than three-word participants.

To test the signifance of this interaction, I fit the
prediction data with a logistic mixed-effects regression
model, using the lme4 package in R with the binomial
link function. The model included random effects for
subjects and sequences on the intercept, with fixed
effects for Grammar (finite-state vs. context-free) and
Prediction Length (one vs. three). The model con-
firmed that participants were more likely to guess the
next word correctly when predicting a single word
than when predicting three words, and that this ef-
fect was signifant (β = 0.51, z = 3.746, p < 0.001).
There was also a signifcant interaction between Gram-

FSA1 FSA3 CFG1 CFG3

10
20

30
40

50

Language x Prediction Window

%
 C

or
re

ct

32.2
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28.9
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Figure 4: Accuracies in the final 40% of trials.

mar and Prediction Length (β = 0.41, z = 2.099,
p < 0.05), indicating that the main effect of Predic-
tion Length was significantly greater among finite-
state learners than among context-free learners. The
effect of Grammar was not significant (p = 0.38).

Adding fixed effects for Sequence Length and Pre-
diction Position (measured as percentage of Length)
revealed a significant effect of Position (β = 1.25,
z = 2.499, p ≈ 0.01). Participants were more likely
to guess the answer correctly the later in the sequence
they were asked to make their guess. These additional
effect terms did not alter any of the results from the
smaller model, though they did improve the overall
model fit (∆BIC = 11.2, p < 0.05).
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3.2.3. Learning Over Time
The previous results paint a picture of the state

of participants’ respective language proficiencies to-
wards the end of the task. But where the present design
really shines is in its capacity to provide a window
into the dynamics of language learning throughout the
experiment.

The plot in Figure 5 displays moving averages for
accuracies in the four conditions, collapsed across
participants. Each point represents the collective ac-
curacy of the participants within a condition on a par-
ticular trial. The lines trace out the average of the
last 33 collective accuracies (thus the rolling window
for accuracy accumulation consisted in 1

5 of the to-
tal number of trials). Taken together, this gives an
impression of the aggregate learning curves for the
different conditions.
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Figure 5: Learning curves for the four conditions. Each line
represents the moving average of participant accuracies within a
condition.

The most immediate property of these curves is
that they are all somewhat different from one another.
The predict-one FSA curve accelarates rapidly
throughout the first two-thirds of the expeirment, but
then plateaus (not altogether stably) for the rest of the
experiment. In contrast, the predict-3 FSA curve is
essentially flat for the duration of the initial period in
which the FSA1 curve is accelerating upwards. That
is, learning in this condition is all but absent for the
first two-thirds of the experiment, but then increases
gradually throughout. After drifting apart for the
initial 100 trials, the two CFG curves both experience
a sharp phase of acceleration late in the experiment,
converging in the end toward the high accuracy of the

FSA1 condition.
To statistically verify the difference in these trajec-

tories, I fit logistic mixed-effects models to the entire
data set, concentrating on interactions between Gram-
mar, Prediction Length, and Time. To simplify the
analysis, trials were divided into three stages of equal
length. This division was primarily made to ensure
sufficiently many data points to maintain statistical
power while providing a dynamic component to the
model, but can also be loosely justified by three ap-
parent regions of continuous activity in Figure 5.

As before, the first model included random inter-
cepts for subjects and sequences, as well as a fixed
effects for Grammar, Prediction Length, and their in-
teraction. In addition, it included a fixed effect for
Stage (encoded as 1, 2, or 3, representing the first,
second, and final thirds of the experiment, respec-
tively). Across all four conditions, participants’ accu-
racies increased over time, so it is unsurprising that
the main effect of Stage is highly significant in this
model (β = 0.14, z = 6.669, p < 0.001). Addi-
tionally, Prediction Length was a significant overall
predictor of performance, with participants asked to
predict a single word more likely to guess correctly
than participants asked to predict the next three words
(β = −0.30, z = −3.239, p ≈ 0.001). Neither Gram-
mar nor the interaction between Grammar and Predic-
tion Length was significant, when data were collapsed
across the three Stages.

To confirm the differential impact that Prediction
Length played on the trajectory of learning for par-
ticipants exposed to different Grammars, I added to
the previous model a fixed three-way interaction ef-
fect for Grammar, Prediction Length, and Stage. That
is, while there was no overall interaction between
Grammar and Prediction Length, the analyses from
the previous section showed that there was an inter-
action between Grammar and Prediction Length in
the final 40% of trials. This shift is expected, since at
the beginning of the experiment, participants in the
four conditions should have performed fairly similarly,
since they were all working with limited exposure to
their respective languages. However, over the course
of the experiment, we expect to see the influence of
Prediction Length drive the two sets of Grammar learn-
ers in different directions. And indeed, this is what
the model shows. The three-way interaction between
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Grammar, Prediction Length, and Stage is significant
(β = 0.19, z = 2.284, p < 0.05), as are the two-way
interactions between Grammar and Stage (β = −0.16,
z = −2.822, p < 0.005), and Prediction Length and
Stage (β = −0.17, z = −2.911, p < 0.005).

3.3. Discussion
From the standpoint of my hypothesis, the most

surprising result is that 3-predicting participants did
worse than their 1-predicting counterparts, regardless
of the language they made predictions about. I ex-
pected the length of the prediction window to be ir-
relevant for the finite-state learners, and to pull in
precisely the opposite direction for those learning the
context free language.

However, it is important to keep in mind that from
an information-theoretic standpoint there was no dif-
ference between the FSA1 and FSA3 conditions. For
instance, consider the example trial from Figure 3,
‘sib daz jes tid | _____’. An FSA1 participant would
be asked to provide a guess as to the next word in the
sequence, while an FSA3 participant would be asked
to provide a guess as to the next three words. But
only the first word of the FSA3 participant’s guess
was scored, to equate the analysis of the two condi-
tions. And in either condition, the entire rest of the
sentence would be revealed after the participant made
their guess(es). That means that despite having seen
exactly the same set of prior sentences,2 and making
a prediction based on the same initial sentence frag-
ment, the FSA1 participants were significantly more
likely to answer correctly than the FSA3 participants.

This suggests that there was an unanticipated cost
to the 3-prediction task. One potential source of the
cost could have been the decreased levels of positive
feedback. Recall that the storyteller only reacted pos-
itively if the participant exactly identified the rele-
vant missing portion of the sentence. Even with per-
fect knowledge of either grammar, this required a bit
of luck, as unfinished sentences could be both struc-
turally and lexically ambiguous. And since within a
categories, lexical ambiguities were independent of

2Or at least, not significantly different prior sets of sentences.
In actuality, the presentation of the stimuli were random, so aver-
aged across conditions, the linguistic histories were effectively
equivalent

one another (for instance, though there is a syntac-
tic dependency between the A category and the N
category, there is no lexical dependency on the two
A items and two N items), making it more unlikely
that a participant would correctly identify the next
three items than the next single item. This lack of pos-
itive feedback might have discouraged participants,
decreasing engagement with the task. Or worse, it
may have led them to reject good hypotheses about
the syntactic structure of the language based on irrel-
evant lexical ambiguity more often than 1-predictors
were led to do so.

Yet, the learning curves reveal that after a long
period of stagnation — roughly half of the experiment
— both FSA3 and CFG3 participants do show clear
evidence of learning. And crucially, the late-stage im-
provements were not uniform between the two groups.
In the second half of the experiment, the CFG3 learn-
ers nearly closed the gap created by the cost of the
more difficult task. That is, in the final 20% of tri-
als, the performance penalty associated with making
longer predictions is effectively neutralized among
the context-free learners, whose final performace is
not significantly different from either the CFG1 learn-
ers (t = 0.5427, p = 0.59) or the FSA1 learners
(t = 0.8944, p = 0.37). The FSA3 learners also im-
proved in the last 20% of trials, but not at the same
rate as the CFG3 learners [need growth rate analysis
here].

4. General Discussion
One interpretation of this result is that while there

was an initial, overall cost to the 3-prediction task, that
cost was eventually offset by the benefit of the addi-
tional prediction-making for the participants attempt-
ing to learn the context free language. But participants
attempting to learn the finite state language, for which
there was no advantage to long-distance predictions
(because there were no long-distance dependencies
in the language), continued to suffer from the diffi-
culty of the task. If this is indeed what is happening,
then it provides indirect support for the hypothesis
that long-distance prediction facilitates learning natu-
ral language-like sequential patterns — i.e. patterns
with long-distance dependencies between implicit cat-
egories of vocabulary items— to a greater extent than
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it facilitates learning patterns with only first-order de-
pendencies.

However, the data do not provide any evidence that
deep predictions actually benefit language learning.
On the contrary, for most of the experiment, those par-
ticipants forced to make deep predictions performed
significantly worse than those learning the same lan-
guage from the same data making only immediate
predictions. At best, we can conclude only that deep
predictions eventually hinder context-free learning
less than they hinder finite-state learning. That is,
within the time frame of the experiment, context-free
learners were able to overcome the cost of predicting
three words into the future, while finite-state learners
were not. As just pointed out, this is consistent with
there being a benefit to long-distance prediction when
mastering long-distance dependencies. But whatever
benefit there is, it is inessential for achieving the pre-
diction accuracy that the CFG3 participants achieved,
given that the CFG1 participants achieved a similar, in
fact, higher accuracy without making (explicit) long-
distance predictions.

It is important to notice though that neither of the
CFG conditions, nor the FSA3 condition, reached a
period of stability in prediction accuracy. Participants
were clearly still learning at the end of the 165 trials.
This is most evident in the CFG conditions, where
accuracies took a dramatic turn for the better nearly
2
3 of the way through the experiment, and showed no
signs of slowing down. It is possible that with more
trials, the benefits of long-distance prediction would
emerge, so that the CFG3 curve would overtake the
CFG1 curve before they both plateaued. I leave the
exploration of prediction length and its interaction
with grammar under longer learning times to future
investigation.

5. Conclusion
In this paper, I have been interested in the role that

prediction and feedback play in language learning.
Eye tracking and neuroimaging studies have revealed
beyond a doubt that people constantly and incremen-
tally anticipate what other people will say (Kamide
2008, Kutas et al. 2011). What’s more, errors in pre-
diction are strongly correlated with a variety of online
processing measures, including reading times (Ehrlich

and Rayner 1981, Levy 2008), syntactic priming ef-
fects (Jaeger and Snider 2013), and of course looking
times (Tanenhaus et al. 1995, Altmann and Kamide
1999).

Indeed, several recent language learning and lan-
guage adaptation models identify expectation-based
revision as the primary mechanism by which learners
develop and fine-tune their internal representation of
the language they are learning (e.g. Chang et al. 2006,
2012, Pickering and Garrod 2013, Fine and Jaeger
2013). According to these theories, by making pre-
dictions about upcoming syntactic material, learners
have the opportunity to formulate implicit hypothe-
ses about the structure of their language, and to test
those hypotheses in a never-ending observational ex-
periment. Incorrect guesses lead the learner to adjust
his or her underlying language model, either by redis-
tributing probability mass over hypotheses that were
compatible with the initial input, or by adjusting the
hypothesis space itself to make room for the observed
data.

These expectation-based processing and learning
theories differ in how they represent natural language
grammars, and therefore how they determine and re-
distribute probabilities in light of evidence. But de-
spite these important differences, many of these mod-
els assume that individuals are one way or another
calculating the likelihood of upcoming material by
implicitly projecting all possible continuations of the
current signal well into the future of the sentence.
As reviewed in §2.2, there is even growing evidence
that online processing costs are best explained by the
aggregate uncertainty among all possible complete
sentences left open by the unfolding fragment (Hale
2006, Frank 2013, Linzen and Jaeger 2014).

Despite the prominent position of anticipation and
long-distance forward modeling in current theories of
sentence processing, and the critical role of prediction
error in emerging computational theories of language
adaptation, there is at present effectively no direct ex-
perimental research into the question of how expecta-
tion formation affects language learning. As a first step
in the direction of this important question, I hypoth-
esized that long-distance prediction making would
facilitate sequential learning, especially for complex
patterns of the sort found in natural languages.

To test this, I conducted an experiment that invited
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participants to play the role of a cartoon character
hearing a story in a language that it understood (but
that the participant did not). From time to time, the
participant’s character would interrupt the storyteller,
at which point the participant was asked to make a
prediction about how the current sentence would con-
tinue. According to the hypothesis, participants being
exposed to a context free language (with recursive,
long-distance dependencies) should show greater or
faster learning when asked to make predictions about
a greater amount of upcoming sentence material. But
participants exposed to a finite state language (with
only local dependencies) should not show the same
learning sensitivity to longer prediction windows.

I found that in the final 40% of trials, after a sub-
stantial amount of exposure, prediction, and feedback,
there was indeed an interaction between grammar
type and prediction length. In this phase of the data,
the average CFG3 learner increased in accuracy at a
faster rate than the average FSA3 learner. However,
there was an overall, unexpected cost to predicting
three items into the future, which dragged both the
3-predicting subgroups down below their 1-predicting
counterparts. This means that there was no direct
evidence for a language-learning benefit associated
with lengthy predictions, even though the significant
late-stage interaction between grammar type and pre-
diction length suggests that the penalty for long pre-
dictions did not have quite the same effect on the CFG
learners and teh FSA learners. In particular, CFG
learners found it more helpful (or perhaps less harm-
ful) to predict three words into the future than FSA
learners. I then speculated that since three of the four
experimental conditions continued to learn right up
until the end of the experiment, it might be possible to
see the hypothesized beneficial effect of long-distance
predictions over a longer learning period, with enough
trials to reach an accuracy ceiling.
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