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A classical probability space 〈Ω, χ, p〉 consists of a set Ω (referred to as the sample space), a
σ-algebra χ ⊆ ℘(Ω) (i.e. a family of sets closed under union and complementation), and a measure
p : χ → [0, 1] mapping subsets of the sample space Ω to real numbers in such a way that for any
E ∈ χ and any set of disjoint Ei ∈ χ:

• p(E) ≥ 0
• p(Ω) = 1
• p(

⋃
Ei) =

∑
p(Ei)

This classical conception fits cleanly around a possible worlds semantics for classical logic. To see
this, let J·K : L → ℘(W ) be the standard Tarskian interpretation function mapping classical formulas
to the sets of worlds in which they’re true. Then from any probability function pW : ℘(W )→ [0, 1]
defined on W , the set of possible worlds, we can read off a probability function p : L → [0, 1]
defined on classical formulas by composing pW with J·K. That is, we set p(φ) = pW (JφK).

Under conditions of certainty, this transformation will respect classical entailment and validity:
if Γ ` φ, then every probability function that assigns 1 to each γ ∈ Γ will also assign 1 to φ. The
converse is also true: if every probability function that assigns 1 to each γ ∈ Γ also assigns 1 to φ,
then Γ ` φ. As a result, this notion of probabilistic validity is sound and complete with respect to
classical logic (Leblanc 1983). More generally, the compositional procedure that routes probabilistic
interpretation through classical possible worlds semantics will verify the following equations, for
any formula φ and any set of mutually inconsistent formulas φi:

• p(φ) ≥ 0
• p(T) = 1
• p(

∨
φi) =

∑
p(φi)

For the class of real-valued interpretation functions satisfying these constraints, Adams (1975)
established that probability preservation is sound and complete with respect to classical logic. That
is, for all sentences A and B, A ` B iff every probability function guarantees that p(A) ≤ p(B).
For proofs, generalizations, and overviews, see Adams (1998); Williamson (2002); Hájek (2001),
and references therein.

For instance, the probability of a conjunction p(φ∧ψ) is always less than or equal to the minimum
of p(φ) and p(ψ) because Jφ∧ ψK is a subset of both JφK and JψK, and the probability axioms above
guarantee that subsets are never more likely than their supersets.

This connection between classical probability and classical logic is generally presupposed in
informal presentations of the probability calculus (Hájek 2003). For example, the last thirty years of
research on what has come to be known as the conjunction fallacy is predicated on the observation
about φ ∧ ψ above. Tversky & Kahneman (1983) asked subjects to rate the comparative likelihoods
of two statements, a conjunction vs. one of its conjuncts. They found that in some circumstances,
people gave more credence to the conjunct than the conjunction, which they declared irrational on
the basis of the probability axioms. But properly speaking, the axioms place constraints on the
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probabilities of sets, not sentences. So Tversky and Kahneman, and much of the literature that
they inspired, implicitly assume that (i) their question targets judgments of the relative probabilities
of the denotations of the expressions they use, and (ii) those denotations are given by a classical
interpretation function.1

However, a variety of semantic programs for natural language depart from the simple Tarskian
picture. In the dynamic semantic tradition, for instance, the meanings of expressions are identified
not with the set of worlds in which they are true, but with the effect that they have on the information
represented in the conversational context. This enriched notion of meaning opens the door to theories
of anaphora, presupposition, and the coordination of conversants on various open informational
parameters, including quantificational and modal domains, vagueness thresholds, lexical extensions,
variable co-indexations, etc.

In a similar but independent vein, language researchers have recently pointed toward a handful
of sentence types that seem to express speaker opinions, beliefs, preferences, or obligations, in ways
that cannot be captured if sentences denote simple sets of worlds. For example, Yalcin (2007) argues
that sentences with epistemic modals like ‘might’ do not express properties that any particular world
can have, but rather properties of information states. That is, when I utter the sentence ‘It might
be raining’, all I mean to say is that one of the worlds I imagine to represent a live candidate for
being actual is such that it’s raining. But I don’t thereby announce a constraint that I believe the
actual world satisfies, as I would with the sentence ‘It is raining’. In fact, the actual world needn’t be
any particular way to sincerely utter the modal claim. Rather, what justifies my expression is the
configuration of my beliefs, and in particular my opinion about the possibility of rain.

Yet another strain of semantic research that rejects the simplicity of propositional denotations is
motivated by connections between questions, existentials, and disjunctions. Like those concerned
with talk of subjective information states, these theorists have also moved toward a denotational
picture that includes alternative possibilities as first-class citizens. The basic idea, played out
in several different keys (e.g. Groenendijk & Stokhof 1991, Kratzer & Shimoyama 2002, Cia-
rdelli et al. 2013), is that some sentences fundamentally denote choices, and it is these sets of
choices that connectives and logical operators target. For instance, Alonso-Ovalle (2006) identi-
fies the meaning of a disjunction with the set containing the propositions denoted by its disjuncts:
[I saw John or Mary] = {[I saw John], [I saw Mary]}.

This last line of research brings the challenge to classical probabilistic interpretations of natural
language expressions into stark relief. Here the discussion is not about arguably pragmatic phenom-
ena — e.g. anaphora and expressions of opinion — that appear to shave semantic interpretation a
little too close for comfort, but about simple, basic boolean assertions. Yet even these sentences, it
is thought, don’t denote sets of fully specified, mutually exclusive worlds, but rather sets of partial
or indeterminate events, or perhaps sets of sets of determinate worlds. But then the assignment
of probabilities to sentences cannot be computed directly in terms of the probabilities of their
denotations, since denotations are not subsets of the sample space.

The obvious thing to try, then, is to lay a probability measure over the alternatives themselves,
rather than the worlds they circumscribe. Then we could try and identify the probability of an

1They might also justify the application of probability laws to natural language in a proof theoretic way, by saying
that it is simply a property of English that expressions of the form A and B entail expressions of the form A, and that the
probabilities associated with expressions should preserve entailment ordering. But then the reliance of the argument on
assumptions of classical logic is even more apparent. In particular, it depends on the validity of conjunction elimination,
which as far as natural language semantics is concerned, is not universally accepted (Fine 2012).
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expression with the cumulative mass of the alternatives in its denotation. The problem is that
alternatives are not necessarily incompatible with one another, the way that worlds are. To make
this concrete, let’s take alternatives to comprise sets of worlds, as in Kratzer & Shimoyama (2002),
Alonso-Ovalle (2006), Groenendijk & Roelofsen (2009), among others. A probability measure
defined on these sorts of alternatives would assign unit probability to the powerset of worlds ℘(W )
and zero probability to the empty set ∅. But we would be free to distribute mass over the singletons
(each containing some A ∈ ℘(W )) any which way we wanted, completely independently of their
relative overlap or disjointness. For instance, one such probability measure pφ might assign φ = {A}
and φ′ = {A} both probability 0.5, so that pφ(φ∪φ′) = pφ({A,A}) = 1, and pφ(φ∩φ′) = p(∅) = 0,
as expected. However, pφ would have no more mass left to assign to any of other set in ℘(W ). So for
any ψ = {B}, where B /∈ {A,A}, pφ(ψ) = pφ(ψ′) = 0, and thus pφ(ψ ∨ ψ′) = pφ({B,B}) = 0.
In general, any such probability function over sets of worlds will assign certainty to at most one
tautology.

This is presumably not an epistemic constraint that our semantics should commit us to. For-
tunately, there is another way to assign probabilistic values directly to the propositions in ℘(W ).
The idea comes from work in formal epistemology in the tradition of Arthur Dempster (1967) and
Glenn Shafer (1976). Dempster Shafer Theory (DST) formalizes a notion of the extent to which
an event provides evidence for various conclusions, and a mechanism for pooling evidence from
different sources. The theory has many superficial similarities to probability theory, and in some
circumstances actually generalizes basic Bayesian conditionalization (Dempster 1968). But at the
core of DST (at least from our perspective) is a mass function that distributes a unit amount of
credence directly over alternative propositions (subsets of the sample space). Various probability-like
functions can then be constructed from this credence distribution that jointly represent the range of
true probabilities one could reasonably assign to worlds in light of the evidence at hand.

Formally, an event or piece of information, is modeled by an assignment of “basic belief” to
subsets of a sample space Ω. Each such basic belief assignment (BBA) m is normalized so as
to map the sets in ℘(Ω) onto positive real numbers in such a way that 1 =

∑
A⊆Ωm(A). The

crucial difference between a BBAm and a classical probability measure p is that p is completely
determined by its behavior on the singleton subsets of ℘(Ω). This is guaranteed by the additivity
axiom, p(

⋃
Ei) =

∑
p(Ei); since every subsetA ⊆ Ω is the union

⋃
{{ω} | ω ∈ Ω}, the probability

p(A) =
∑

ω∈A p({ω}).
Butm is not required to be additive. It distributes a unit’s worth of mass over the sets of worlds

in ℘(Ω) without reference to the mass of the individual worlds in those sets. So where p gives
weight to a proposition A in proportion to the cumulative evidence that supports each of the worlds
compatible with A (i.e. by implicitly marginalizing over all of the other possible propositions that
might distinguish worlds),m gives weight to a proposition A in accordance with the evidence that
can be said to exactly support A, independent of any other variable. That is, in light of some body of
evidence,m gives A credence to the extent that the evidence supports A but nothing more specific
than A.

So technically, a BBA is any functionm : ℘(Ω)→ [0, 1] such that for any E ∈ ℘(Ω):

• m(E) ≥ 0
• m(Ω) = 1
•
∑
A⊆Ω

m(A) = 1
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The subsets of Ω thatm assigns nonzero mass to are called the focal elements ofm.
Every BBA additionally determines two other functions bel and pl, glossed respectively as the

belief and the plausibility thatm assigns to each A ⊆ Ω. The belief function determined bymmaps
every set A to the cumulative mass assigned to subsets of A. The plausibility function determined
bym maps every set A to the cumulative mass assigned to sets that are consistent with A.

bel(A) =
∑
B⊆A

m(B) pl(A) =
∑

B∩A 6=∅

m(B)

Dempster (1967) showed that all such belief and plausibility functions definable in this way can
be independently axiomatized without reference to an underlying mass function. Belief functions
are exactly those functions bel : ℘(Ω)→ [0, 1] such that for any set of disjoint Ei ∈ ℘(Ω):

• bel(E) ≥ 0
• bel(Ω) = 1
• bel(

⋃
Ei) ≥

∑
bel(Ei)

And to every belief function, there is a dual plausibility function such that pl(A) = 1− bel(A).
The only difference between belief functions and probability functions is the third axiom. Where

probabilities are exactly additive, in the sense that the probability of two disjoint sets is the sum of
their probabilities, belief functions are superadditive; the probability of two disjoint sets is at least
the sum of their probabilities. Thus, it is possible in DST to speak of a belief function that assigns
full credence in a tautology φ ∨ ¬φ without assigning any credence whatsoever to either φ or ¬φ.
In fact, the vacuous BBA m = Ω 7→ 1 represents the situation in which every such tautology is
known with certainty — i.e. bel(Ω) = 1 — without any commitment to any particular proposition:
bel(A) = 0,∀A ⊂ Ω.

Every probability space 〈Ω, χ, p〉 determines a corresponding belief function

belp(A) =
∑
B⊆A

m(B), wherem(B) =
{
p(B) if B is a basis element for χ
0 otherwise

This belief function corresponds to the lower envelope of the probability measures extending p
to Ω, (i.e. belp(A) = inf{p′(A) | p′ : ℘(Ω) → [0, 1], and p′(X) = p(X),∀X ∈ χ}). Conversely,
every belief function is equivalent to the lower envelope of probability measures that are consistent
with it. That is, for an arbitrary particular belief function bel, bel(A) = inf{p(A) | p ∈ P}, where
P = {p′ | p′(A) ≥ bel(A), ∀A ∈ Ω}

Dually, plausibility functions correspond to upper envelopes on probability spaces. These results
imply that belief functions and plausibility functions provide lower and upper bounds, respectively,
for probability measures over a sample space. Thus we may think of a BBA m defined over
propositions in ℘(Ω) as determining a set of probability functions P whose members respect the
boundaries of belm and plm, the belief and plausibility functions determined bym. That is, every
BBAm determines a canonical set of measures P = {p | belm(A) ≤ p(A) ≤ plm(A), ∀A ⊆ Ω}.

When χ = ℘(Ω), belp = p. More generally, whenm assigns mass only among basis elements
of χ, then belm = plm are both classical probability functions for χ.

Taken together, these facts underscore the sense in which DST generalizes classical probability
theory. Dempster himself appears to have thought of mass functions as essentially compact repre-
sentations of families of probability distributions (Dempster 1967). Shafer & others (1976) argues
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against this understanding of the mathematical theory, promoting instead a view of belief functions
as defining a theory of evidence, independent of classical probability theory. The difference between
these interpretations is not relevant here, and I will float between the language of imprecise proba-
bility and evidential support freely (see Halpern & Fagin (1992) for discussion of the relationship
between these approaches).

For instance, when it comes to the issue of combining belief functions, we may sometimes
wish to think of the process as a form of probabilistic update, and at other times as a kind of
evidence pooling. In the former light, belief combination should resemble a generalized form of
Bayesian conditionalization, tailor-made for the sort of meta-indeterminacy (indeterminacy about
probabilities) that BBAs encode. In the latter light, combination should aggregate credence on
outcomes supported by both information states, and ignore inconsistencies between them.

The classic DST combination rule, going back to Dempster (1968), is given below. Given two
BBAsm1 andm2, we construct a joint mass function by intersecting the focal elements ofm1 and
m2 pointwise, and multiplying their probabilities. For those pairs of elements that happen to be
disjoint (representing a state the two bodies of evidence provide support for respectively inconsistent
alternatives), the associated credences are redistributed evenly over the other possibilities.

[m1 ⊕m2](A) = f(A)
1− f(∅) , where f(Z) =

∑
X∩Y=Z

m1(X)m2(Y )

Against this backdrop, we can return to the question of how to meaningfully distribute credences
over sentences, in an alternative-oriented semantics. One such semantics, championed recently
by Roelofsen (2013), building on work by Ciardelli et al. (2009), is couched in the framework of
Inquisitive Semantics, which takes sentences to denote sets of nonempty propositions. Roelofsen
proposes the following recursive semantics for propositional formulas:

[p] =
{
JpK
}
, for atomic formulas p, where JpK = {w | w(p)}

[¬φ] =
{⋃

[φ]
}

[φ ∨ ψ] = [φ] ∪ [ψ]
[φ ∧ ψ] =

{
α[ψ]

∣∣ α ∈ [φ]
}
∪
{
β[φ]

∣∣ β ∈ [ψ]
}
, where AΓ = A ∩

⋃
Γ

[♦φ] = [φ] ∪
{
W
}

Atomic formulas denote the singleton set of the worlds that verify them. Negations denote the
singleton set of the worlds not included in any of the alternatives of their prejacents. Disjunctions
accumulate the alternatives of their disjuncts. Conjunctions intersect each alternative in each
conjunct with the union of the alternatives in the other conjunct. And epistemic possibility modals
“highlight” the alternatives of their hosts. For example,4p denotes a set containing two alternatives,
one nested within the other. The outer alternative is the trivial setW , indicating that4p does not
actually provide any information, in the sense that it does not rule any state of affairs out. The inner
alternative is JpK, which draws attention to φ.

It is mostly straightforward to translate Roelofsen’s semantics into a DST-friendly interpretation
system. Only conjunction — to which we return shortly — requires a bit of care. The basic strategy
for interpreting the language into a Dempster Shafer Theoretic universe, will be to provide a recursive
scheme that assigns BBAs to formulas in such a way that the alternatives of Inquisitive Semantics
are preserved as focal elements of the corresponding BBAs. Such a scheme is presented below.
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⟪p⟫ =
[
JpK 7→ 1

]
⟪¬φ⟫ =

[⋃
[φ] 7→ 1

]
⟪φ ∨ ψ⟫ =

[
A 7→ 1

2

(
⟪φ⟫(A) + ⟪ψ⟫(A)

)]
⟪♦φ⟫ =

[
A 6= W
W

7→ θ ⟪φ⟫(A)
1− θ

]
where θ � 1

⟪4φ⟫ =
[
A 6= W
W

7→ ρ ⟪φ⟫(A)
1− θ

]
where ρ� 0

Uninquisitive sentences like ‘p’, for some atom p, denote categorical BBAs, all of whose mass is
concentrated on JpK. Note that this represents a body of evidence exactly trained on the content of p,
remaining silent about everything else. But the belief function that this BBA induces will, in addition
to accepting p with certainty, also accept every ψ that p entails. ¬φ likewise denote categorical
BBAs, which concentrate mass entirely on the complement of the alternatives (considered jointly) in
φ. The focal elements of a disjunction are weighted averages of the focal elements of the disjuncts.

Epistemic possibility modals, which following Yalcin (2010) may as well include graded modals
like ‘probably’, allocate a context-sensitive amount of credence to their hosts, and reserve the rest for
the trivial stateW . For modals low on the possibility scale, like ‘might’, the credence apportioned
to the host’s alternatives is low. For higher-likelihood modals like ‘probably’, this credence is
substantially higher (presumably above 0.5 in the case of ‘probably’).

In the simplest case, we could identify logical conjunction with the Dempster Rule of Com-
bination, defined above by m1 ⊕m2. In fact, this seems to be the best way to make sense of an
earlier Inquisitive treatment for the same fragment of language which cached out conjunction in
terms of pointwise intersection of alternatives (Ciardelli et al. 2009). But because of the special
symmetric way that Roelofsen defines conjunction (his intention being to preserve a particular
algebraic characterization of the logical operation), we have to be somewhat more careful. Rather
than intersecting every focal element x in m1 with a focal element in m2 (and vice versa), we
intersect x with the union of the focal elements inm2 (and vice versa). Then we compute joint mass
as a product of the mass assigned to x together with the masses of all y in m2 that are consistent
with x. This strategy suggests the following definition:

[m1 ~m2](A) = k1
∑

A=Xm2
Y ∩A 6=∅

m1(X) m2(Y ) + k2
∑

A=Ym1
X∩A 6=∅

m1(X) m2(Y )

= k1

( ∑
Y ∩A 6=∅

m2(Y )
)∑
A=Xm2

m1(X) + k2

( ∑
X∩A 6=∅

m1(X)
)∑
A=Ym1

m2(Y )

= k1 pl2(A)
∑

A=Xm2

m1(X) + k2 pl1(A)
∑

A=Ym1

m2(Y )

where k1 and k2 are normalizing constants, and AΓ = A ∩
⋃

Γ, as before. As it happens, this
procedure can also be expressed in terms of DST plausibility functions. From this perspective, to
combine BBAsm1 andm2, we first intersect each alternative ofm1 with the union of alternatives
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inm2, and then scale the result by the plausibility thatm2 attributes to that intersection. Then we
repeat the process with the alternatives inm2 and the plausibilities determined bym1. Finally, we
renormalize so that everything sums to one.

To complete the fragment, we set the denotation of conjunction equal to this combinatory
operation on the denotations of the conjuncts.

⟪φ ∧ ψ⟫ =
[
A 7→ [m1 ~m2](A)

]
These denotations guarantee that whenever a formula JφK has alternatives {α1, . . . , αn}, the

corresponding mass function ⟪φ⟫ will have {α1, . . . , αn} exactly as its focal elements. This ensures
that we preserve, among other things, the nice empirical predictions of Roelofsen’s semantics with
respect to epistemic modals and disjunction. For instance, in English, all of the sentences in (1)-(3)
are understood to have the same semantic effect; they all intuitively present the listener with a pair
of epistemic options, without committing to either.

(1) John might be in Paris or in London
(2) John might be in Paris or he might be in London
(3) John might be in Paris and he might be in London

Accordingly, given the Inquisitive interpretation function above, the three sentences will all
denote the same three-element set of alternatives. One alternative will correspond to the worlds
in which John is in Paris, another to the worlds in which he is in London, and a third to the trivial
proposition containing all worlds (representing the fact that the sentence contains no definitive
information).

Likewise, the DST interpretation function will produce BBAs for the three sentences that each
contain the same three focal elements. The sentence in (1) will split a small amount of mass
between the two propositions indicating John’s potential location, and reserve the rest for the trivial
information state. Similarly, for (2), the proposition that John is in London will accumulate the little
weight that the first conjunct affords it, and the proposition that he’s in Paris the weight that the
second conjunct affords it. The trivial state will collect mass from both noncommittal disjuncts,
and then everything will renormalize. Finally, in (3), since none of the alternatives in either of the
conjuncts are inconsistent, all of the plausibilities will be 1. And because both conjuncts contain
the trivial proposition as an alternative, every alternative will survive into the final mass function
(since A ∩W = A, for all A ⊆ W ). As in (2), the possibilities raised in each conjunct will keep
their masses, and the trivial state will accumulate weight from both conjuncts, before renormalizing.

This is all good and well, but we still have not yet reached the point where we can assign
probabilities to sentences. So far, all we have done is translate formulas into richly structured
continuously-valued representations. The situation is familiar to many flavors of natural language
semantics, where a variety of “closure” and “lowering” operations are needed to reduce articulated
structures semantic structures to truth conditions. For instance, in the Inquistive framework we have
been considering, to determine whether a sentence φ is true at a particular world, we typically ask
whether that world is a member of of the union of the alternatives denoted by φ. We cannot inspect
the denotation directly. Similarly, most decision- and game-theoretic models that depend on formal
theories of partial belief expect genuine probabilities over worlds (or hypotheses).

Fortunately, there are a variety of transformations available to DST models that convert belief
functions to probability functions (for a overview, see Daniel 2006). One of the simplest such
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transformations, called the plausibility transformation, leverages the structure of the DST plausibility
function to compute probability values for individual worlds, based on a BBA. So, for any DST
mass functionm, let

pm(w) = plm({w})∑
w′∈W

plm({w′})

be the probability function that assigns to each world w the plausibility of w according tom, divided
by the cumulative plausibilities overW . Halpern & Fagin (1992) and Pearl (1990) both argue that
this plausibility-transformed probability function has much in common with the likelihood function
of normal Bayesian update. The resemblance is in fact so clear that both authors suggest factoring
probabilistic update into a two-step algorithm that routes through DST mass functions.

Halpern & Fagin (1992) advocate for a reconceptualization of “evidence” in dynamic terms.
Rather than associate a piece of information or body of data with a DST belief function simpliciter,
they suggest that we identify it with a particular function from prior probability distributions to
posterior probability distributions. That is, for some evidence encoded as an assignment of credence
m to a set of focal alternatives, Halpern & Fagin (1992) define the update function λp′ . p′ ⊕ pm,
where ⊕ is Dempster’s Rule of Combination, and pm is the plausibility transformation of the mass
function p. This definition takes advantage of the fact that all probability functions are special cases
of belief functions, and so can be combined using the tools laid out above.

To some extent, Halpern and Fagin’s dynamic turn anticipates recent expressivist approaches
to the meanings of epistemically modalized sentences. Yalcin (2012), for instance, interprets
expressions as instructions for updating (sets of) probability functions. For example, the atomic
sentence ‘It rained’ encodes the function that conditionalizes any prior probability distribution on the
set of worlds in which it rained. The more complex sentence ‘It will probably rain’, however, encodes
the function that tests prior probability distributions to make sure that they assign sufficiently high
credence to the potential for rain.

In this respect, the simple DST semantics I’ve provided for the tiny fragment above provides a sort
of bridge between the linguistically-motivated representational models of natural language semantics,
and the nuanced, decision-theoretic models of partial belief. Puzzled by the way people talk about
their own epistemic states, Pearl (1990) even suggests that “there might be some phase of reasoning
where people use belief functions, possibly in interpreting the impact of an observation, or during the
mental exercise of estimating probabilities from a qualitative knowledge”, and furthermore that DST
“could serve as a useful interface between a human probability assessor and a mechanical reasoner–a
translator from colloquial assertions about probability assignments into likelihood functions.” So if
the Inquisitive take on the vocabulary of subjective uncertainty, including modals like “might” and
possibility-generators like “or” is a good one, then its resemblance to the basic structure of DST
goes some way towards explaining how natural languages manage to express uncertainty in a way
that is useful for the reasoning agent. And this sort of DST semantics provides a small step towards
a robust language-reasoning interface.
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