
Dynamic semantics with static types

Dylan Bumford
UCLA

Simon Charlow
Rutgers

Abstract Semantic analyses of natural language typically rely on variables for the interpretation of
binding relationships. This is true of standard static setups, where sentences might denote sets of
variable assignments, as well as standard dynamic ones, where they might denote relations between
(sets of) variable assignments. Several well-known alternative frameworks eschew object-language
variables in favor of representing semantic dependencies as functional dependencies. This obviates
assignments, and has the bene�t that any expression’s binding needs are discoverable directly
from its type. But these popular variable-free approaches are limited to static, in-scope binding
relationships, those in which dependents occur in the arguments of their binders. In this paper
we develop a semantics that is variable-free in the same sense, but captures traditional notions of
dynamic anaphora. We demonstrate the value of anaphoric type transparency with novel analyses of
crossover, ellipsis, and sloppy/paycheck anaphora, and compare the new semantics, which introduces
the notions of parameterized monads and lenses to the linguistics literature, with other list-based
dynamic systems and other accounts of crossover.

1 Introduction

One of the chief aims of dynamics semantics is to explain how an inde�nite in one clause can come
to bind a pronoun in another (Kamp 1981, Heim 1982, Groenendijk & Stokhof 1991, Muskens 1996,
and many others). Analyses in this tradition are often built around a procedural metaphor anchored
by the idea of sequential semantic interpretation. First meet a farmer 𝑓 ; next meet a donkey 𝑑 ; now
learn that 𝑓 owns 𝑑 ; and so on. On occasion, it is even claimed that all of semantic composition can
be understood as a morpheme-by-morpheme sequence of dynamic updates to an information state
(Bittner 2001; see also related discussions in Brasoveanu & Dotlačil 2020, Bott & Sternefeld 2017).

The trouble is that any robust compositional semantics for natural language must contend with
the fact that some expressions take scope over syntactic material that precedes and/or dominates
them. When this happens, expressions that are low/rightward/late end up controlling what in-
formation is available to other expressions that are high/leftward/early. Allowing for this sort of
inversion of control both subverts the procedural metaphor and neutralizes vaunted evaluation
order asymmetries.

In this paper we attempt to have our dynamic cake and eat it too. We develop a directly
compositional, variable-free dynamic semantics with the following features:

• Contexts are �nite, type-heterogeneous lists (and later, trees), constructively generated in the
course of semantic interpretation

• Pro-forms, including ellipses, are polymorphic update functions on contexts, with traditional
numerical or alphabetical indices replaced by two (and later, three) combinators that can be
used to build arbitrarily deep lenses into contexts

• Every expression’s type reveals both the discourse referents that it pushes and the unbound
anaphoric dependencies that it contains

• The type system is predicative; all expressions are simply-typed or parametrically polymor-
phic, with principal types guaranteed to be inferrable

• Dynamic sequencing is monadic, enabling standard integrations with combinatorial theories
of scope, and �ne control over evaluation order

1 xover.tex � October 22, 2022

2

We will discuss and motivate these properties in the following sections, but it will likely be
helpful to go ahead and sketch what we have in mind. Consonant with much of the literature on
dynamic semantics, we conceive of a semantic update as a nondeterministic function that yields
values by transitioning from an input context to a set of potential output contexts. Let ι τ⇒ ο
abbreviate the type of such a function, which given an input ι produces values τ paired with
outputs ο: that is, ι τ⇒ ο ≡ ι� {τ × ο}. Crucially we allow that the output contexts ο may be of a
di�erent type than the input context ι. In fact, in general we assume the introduction of discourse
referents will change the type of a discourse state by recording the type of the referent so introduced.
For instance, assuming the name ‘John’ introduces j as a referent, we might have the denotation
in (1a); this is a computation that transitions from a state 𝑖 to a state (j, 𝑖), yeilding the value j for
composition with the rest of the sentence, as in (1b). Since the name does not request any particular
information from the discourse context, the incoming state may be of any type whatsoever. In
particular, it may just as well be empty: ().

John⊲ : Γ e⇒ (e, Γ)
ÈJohn⊲É = λ𝑖 . {〈j, (j, 𝑖)〉}

(1a)

John⊲arrived : Γ t⇒ (e, Γ)
ÈJohn⊲ arrivedÉ = λ𝑖 . {〈arrive j, (j, 𝑖)〉}

(1b)

Inversely, a pronoun requires an antecedent somewhere in its input, but does not otherwise
advance the discourse. On the contrary, we suggest that a pronoun uses up its referent, removing it
from the discourse record. The denotation in (2a) for instance reads in a context that has at least
one value, and pulls that value out of the context for local composition. Notice that the anaphoric
dependency of the pronoun, signaled by its type (e, Γ)

e⇒ . . . , is inherited by the containing
expression in (2b), signaled likewise by its type (e, Γ) t⇒

he0 : (e, Γ)
e⇒ Γ

Èhe0É = λ(𝑥, 𝑖). {〈𝑥, 𝑖〉}
(2a)

he0 whistled : (e, Γ)
t⇒ Γ

Èhe0 whistledÉ = λ(𝑥, 𝑖). {〈whistle𝑥, 𝑖〉}
(2b)

Sequencing an expression that adds a referent with an expression that consumes one has the
expected cancelling e�ect. The outgoing state of the former is guaranteed to match the incoming
requirements of the latter, so the composite type is once again entirely parametric in its input.

John⊲ arrived; he0 whistled : Γ
t⇒ Γ

ÈJohn⊲ arrived; he0 whistledÉ = λ𝑖 . {〈arrive j ∧whistle j, 𝑖〉}
(3)

The details of pronouns and indices are given in Sections 3.1 and 5, but the upshot is that
pronouns may impose unboundedly deep requirements on input contexts. The sentence in (4), for
instance, requires a context that has been added to at least twice, second-most recently with an
entity. When this requirement is met by a preceding expression, the dependency is discharged (6);
when it is not, the dependency persists (7).

she1 whistled : (α, (e, Γ))
t⇒ (α, Γ)

Èshe1 whistledÉ = λ(𝑥, (𝑦, 𝑖)) . {〈whistle𝑦, (𝑥, 𝑖)〉}
(4)

Mary⊲ saw John⊲ : Γ t⇒ (e, (e, Γ))
ÈMary⊲ saw John⊲É = λ𝑖 . {〈see jm, (j, (m, 𝑖))〉}

(5)

3

Mary⊲ saw John⊲; she1 whistled : Γ
t⇒ (e, Γ)

ÈMary⊲ saw John⊲; she1 whistledÉ = λ𝑖 . {〈see jm ∧whistle j, (j, 𝑖)〉}
(6)

John⊲ arrived; she1 whistled : (e, Γ)
t⇒ (e, Γ)

ÈJohn⊲ arrived; she1 whistledÉ = λ(𝑦, 𝑖). {〈arrive j ∧whistle𝑦, (j, 𝑖)〉}
(7)

This is the sense in which the dynamic semantics we propose is statically typed. A pronoun
without an antecedent in the discourse record is simply ill-typed. For example, the empty context
() :() cannot serve as input to (7); the sentence and the empty context plainly do not have compatible
types, and this incompatibility can be detected “at compile time”, before the meaning of the sentence
is evaluated in any way. This contrasts with standard dynamic approaches to anaphora, wherein
the absence of a referent is only detectable “at runtime”, typically when a pronoun looks to a partial
assignment function that happens to be missing its index. That is, you have to try and compute the
meaning of the sentence — to run it, so to speak — in order to �nd out whether it is de�ned.

We do not wish to suggest that static typing is inherently preferable to the alternative (see
Section 8.4 for further discussion of this point), but this paper identi�es several cases where static
typing, and the concomitant type-level transparency, result in improved empirical coverage over
the alternatives. On a technical level, previous uses of static types to drive theories of anaphora
have either been limited to static, in-scope binding (e.g., variable-free semantics), or required the
use of dependent types (e.g., Martin 2016), for which the problem of type inference is undecidable.
The fragment we spell out here requires a comparatively simple type theory with so-called Hindley-
Milner polymorphism, in which type inference is decidable and practical, and every expression is
guaranteed to have a single, maximally general, inferrable type (see Pierce 2002 for discussion of
Hindley-Milner type theory and comparison with dependent types).

As mentioned above, anaphora is expected to be heterogeneous. A context may in principle
contain a value of any type at any position, and a pro-form may request a value of any type at any
position. As long as the two match, anaphora will succeed. Typical dynamic frameworks — and
static ones, for that matter — are not well-equipped for this sort of cross-categorial reference, as we
discuss in Section 2. On the other hand, variable free theories of anaphora, discussed in Section 3,
handle heterogeneity without any fuss at all, but have rarely been applied to cases of genuine out-
of-scope binding. We attempt to bring these traditions together in Sections 4 and 5 in a way that
we hope seems familiar. Section 6 on crossover illustrates the value of having expressions disclose
the needs of their unresolved pronouns in their types, and Section 7 puts type-heterogeneity to
work, demonstrating how various sorts of intensional anaphora may be derived, including paycheck
pronouns and sloppy ellipsis. As desired, the resulting fragment maintains a linear (and dynamic)
theory of binding alongside a traditional non-linear (and island-sensitive) theory of scope.

2 Dynamic semantics

The simplest and most commonly used variants of dynamic semantics only allow anaphora to type
e, without any type-theoretic residue of unbound pronouns.

Yet there is a clear need for generalized binding and discourse reference. Most obviously,
extraclausal anaphora is commonplace with any type-theoretically atomic sort of object (times,
worlds, degrees, events, etc.). Indeed the availability of such anaphora is sometimes taken to
diagnose the linguistic utility of a primitive type in the �rst place (see Rett 2022 for a survey of
arguments along these lines). We also take it to be uncontroversial that propositional anaphors
like ‘too’ and response particles like ‘yes’ and ‘no’ require semantic tracking of propositional (and

4

therefore typically functional) discourse referents. Cross-categorial movement and reconstruction
create further dependencies involving typically functional types, forcing even static analyses to
recognize asisgnments that sort variables by type (Heim & Kratzer 1998).

More interestingly, focus- and givenness-marking are generally recognized as anaphoric pro-
cesses. Rooth (1985), for instance, famously introduced pronouns into logical forms to account for
the relationship between an expression containing a focused constituent and its unfocused dis-
course antecedent. Since expressions of any (possibly functional) type may contain foci, it follows
that antecedents and pronouns may be of any type as well. Relatedly, ellipsis is often seen as a
species of anaphora, with linguistic gaps re-invoking the meanings of earlier expressions. And since
ellipsis antecedents may contain arbitrarily complex arrangements of quanti�ers, the discourse
referents they generate may have types of arbitrarily high orders.

This diversity of pro-reference requires technical care, but isn’t especially problematic for tradi-
tional Tarskian semantic schemes, where the assignnments that value variables exist in theoretical
limbo between the object language and the model. An assignment with countably many variables
of type e is not much di�erent from an assignment with countably many variables of each type,
and a suite of type-sorted pronouns does not add any real theoretical complexity to a grammar that
already contains higher-order quanti�cation. But many dynamic frameworks, and some static ones,
reify these assignments in their models, and characterize the denotations of expressions as functions
from and to assignments. If these expressions are to have types, the assignments they depend on
must have types too. But if these assignments are functions from variables to values, and the values
can be any sort of model-theoretic object whatsoever, then there is no choice but to introduce a uni-
versal type > that covers the union of every domain. Then an assignment may be of type Var � >.

The trouble really begins when the referents of pronouns are themselves pronominal in some
respect. This is perhaps clearest in the case of sloppy verb phrase ellipsis, where the ellipsis
antecedent contains a bound pronoun that is re-bound in the elliptical context. For instance, in
(8), the local discourse context of the second clause determines that the elliptial gap should be
understood to mean whatever ‘called his𝑥 mom’ means. And then the same local context is used
to determine that the pronominal dependency in that denotation should resolve to whatever 𝑥 is
locally assigned to.

John𝑥 [called his𝑥 mom]𝑦 ; Bill𝑥 did𝑦 too(8)
John𝑥 spent [his𝑥 paycheck]𝑦 ; Bill𝑥 saved it𝑦(9)

Similar mechanics govern paycheck readings in which a pronoun is anteceded by a nominal
form that again contains a pronoun, as in (9). Imagine that the antecedent expression ‘his paycheck’
in (9) denotes the function from any assignment 𝑔 to the paycheck of whoever 𝑔 assigns to 𝑥 . If
‘John’ binds 𝑥 , then this refers to John’s paycheck. Intuitively it is this function that the pronoun in
the second clause of (9) invokes, now in a context where ‘Bill’ has captured the binding of 𝑥 . That
is, the local discourse context of the second clause is an assignment 𝑔′ that maps 𝑦 to the function
λ𝑔.𝑔𝑥 . The pronoun then refers to the value that this function takes at the same local context 𝑔′. In
other words, the denotation of ‘it’ here is λ𝑔.𝑔𝑦 𝑔, a function that takes any assignment 𝑔, extracts
the anaphoric denotation stored at 𝑔𝑦 and applies this assignment-dependent meaning to 𝑔.

The problem, as Muskens (1995) points out, is that there is no such function. Let g abbreviate
the type of assignments, Var�>, and let 𝑣 be a variable of type g� t. Then if there were a function
pro = λ𝑔.𝑔𝑣 𝑔, of the sort needed for paycheck anaphora, it would also be of type g � t. Being a
function, it should apply to any assignment 𝑔 in the domain of g. In particular, it should apply to

5

any assignment 𝑔∗ such that 𝑔∗ 𝑣 = λ𝑔.¬(pro𝑔). But then pro𝑔∗ = 𝑔∗𝑣 𝑔
∗ = ¬(pro𝑔∗), which is

impossible.
Muskens (1995, 1996) himself opted to treat heterogeneous discourse states not as assignments

at all, but as abstract points in the model, akin to possible worlds. Variables then assign referents to
states, rather than the other way around. But the potential for paradox arises just the same (Muskens
1995: p. 152, fn. 10), and so variables are implicitly prohibited from ranging over intensional objects
(nothing of type g � . . .). The solution yields a consistent logic, but at the cost of intensional
anaphora. Hardt (1999) relaxes this assumption, speci�cally aiming to analyze discourses like
(8) and (9), but gestures toward further restrictions that might be imposed on the syntax of the
metalanguage so as to prevent recursive de�nitions.

3 Variable-free semantics

Rather than relying on a single, imperial notion of context capable of storing any type of semantic
object, variable-free theories of binding solve the formal problem of heterogeneous anaphora by
eliminating the idea of an anaphoric context altogether. Trivially, with no variables in the object
language, there is no need for assignments in the metalanguage—heterogeneous or otherwise.
In fact, variable-free fragments tend to be directly compositional, making no essential use of a
metalanguage at all.

Instead, anaphoric elements like gaps, ellipses, and pronouns give rise to denotations that take
additional, ordinary functional arguments. Those additional arguments provide the values of the
contained dependencies. For instance, a sentence containing a single nominal pronoun, like (10),
might denote a function from possible antecedents for that pronoun (that is, individuals) to whatever
truth value that sentence would have if the pronoun referred to that antecedent. A sentence missing
a single verb phrase, like (11), might denote a function from antecedents for that ellipsis (that is,
properties) to whatever truth value that sentence would have if the ellipsis were �lled in with that
property. Combining the two sentences, as in (12) ought then to denote a function from individuals
(to resolve the pronoun) and properties (to resolve the ellipsis) to truth values.

She left(10)
John did(11)
She did(12)

Already we may note two distinctive features of the variable-free semantic program. First, and
most distinctively, it is plainly impossible therein for grammatical constraints to refer to object-
language variable names, because there aren’t any. One immediate consequence of this is the
necessity of non-syntactic explanations for Binding Theoretic and crossover e�ects, which we
return to in Sections 4 and 6. Second, if an expression harbors any unresolved anaphoric elements,
then the type (and/or category) of that expression will reveal the elements’ presence and nature. As
in the example above, a sentence with one unbound pronoun is of type e � t; a sentence with two
unbound pronouns is of type e � e � t; a sentence with two unbound pronouns, NP ellipsis, and
VP ellipsis will have type e � e � (e � t) � (e � t) � t; etc.

The tradeo� in treating constituents containing anaphors as ordinary functions awaiting an-
tecedent arguments is that semantic combination can become a much more delicate and complex
a�air. Not every verb phrase will denote a property, and not every noun phrase an entity, so the
blunt hammer of Function Application can hardly be expected to mediate all semantic combina-
tions. Jacobson (1999, 2014), for instance, de�nes several in�nite families of recursive combinators

6

approximating function composition and argument duplication at arbitrary (and arbitrarily many)
argument positions. In light of this, adding a pronoun or an additional argument between a binder
and a bindee can mean re-thinking all the combinators in a derivation.

And then there is scope. Without object-language variables, there is no object-language abstrac-
tion, and so no way to create in the syntax the sorts of derived properties characteristic of nuclear
scopes. We return to this issue in Section 4, where we present, and adopt, Shan & Barker’s (2006)
combinatorial solution to a robust theory of scope-taking. First, though, we’ll introduce a system
of (static) pronouns that we will argue maintains the type-theoretical bene�ts of the variable-free
vision, but paves the way for a more uniform picture of composition.

3.1 Inductive indices

One way to frame the above discussion is that total, heterogeneous assignments encode contexts
that are maximally large. Expressions are provided with all of the information they could possibly
need, whether or not they actually need any contextual information at all. The technique is a
classic generalization to the worst case, and without some care the cases can get so bad as to
be paradoxical. Conversely, variable-free theories that model anaphors as identity functions are
maximally small. Expressions are provided with exactly the information required to settle the
referents of open dependencies, and no more. The technique is a �at refusal to generalize, such that
every pronoun demands its own singular context. As a result, not only is the type of an expression
divorced from its underlying syntactic category, but also the number of contextual inputs required
for evaluation— the very adicity of the denotation— becomes unpredictable.

We do not wish to suggest that either of these approaches are formally or empirically untenable,
but we would like to introduce a notion of dependency that splits the di�erence between the two.
Expressions, we propose, accept contexts that contain at least enough information to value their
unbound anaphors. Note that both sorts of theories above are simply-typed; the context required for
every expression is fully determined by its components. With assignments, this is because the input
to any semantic evaluation is of type Var�>; for variable-free semantics, this is because the inputs
to any semantic evaluation are of whatever types its anaphors are. In contrast, the proposal here is
to let denotations be as polymorphic as possible in their inputs. The types in (14)–(18) illustrate the
di�erence between the three approaches.

she0 left : (Var � >) � t variable-full
she0 gave it1 to him2 : (Var � >) � t

(14)

she left : e � t variable-free
she gave it to him : e � e � e � t

(16)

she0 left : (e, Γ) � t polymorphic
she0 gave it1 to him2 : (e, (e, (e, Γ))) � t

(18)

The upshot of this is that— like traditional variable-free frameworks, and unlike traditional
assignment-based frameworks— expressions with di�erent kinds (and numbers of) dependencies
have di�erent types, signaling what anaphoric information is required for evaluation. But expres-
sions are also uniform— like assignment-based frameworks, and unlike traditional variable-free
frameworks— in their dependence on one (and only one) context, which may well be accessed by
multiple distinct pronouns.

7

Formally, di�erent anaphors may access di�erent components of the context, so as is common,
we distinguish them with indices. But, crucially, di�erently indexed pro-forms will have di�erent
types. A pronoun that reads from the �rst coordinate of a state requires only that the state has a �rst
element (and returns whatever that element is); a pronoun that reads from the second coordinate
requires that the state has at least two elements (and returns whatever the second element is); etc.

it0 : (α, Γ) � α(19a)
it1 : (α, (β, Γ)) � β(19b)
it2 : (α, (β, (ς, Γ))) � ς(19c)

The entire in�nite family of pronouns could be lexically stipulated, but it may also be generated
inductively if indices themselves are identi�ed as functions from contexts to values (Danvy 1998,
Fridlender & Indrika 2000). For instance, let ÈzÉ be the function that projects the �rst element of a
pair. And let ÈsÉ be the function that, given a projection function 𝑛, returns the projection function
that skips the �rst element of a pair and applies 𝑛 to the remainder.

z : (α, Γ) � α s : (Γ� τ) � (α, Γ) � τ
ÈzÉ := fst ÈsÉ := λ𝑛.𝑛 ◦ snd

(20)

Here it is easiest to imagine Γ as standing for a sequence of types (σ1, (. . . , (σ𝑛−1, σ𝑛))), understood
as the types of the things that have been stored for potential reference. Then the “indices” used for
binding are just z and all its s-uccessors: {z, sz, s (sz), s (s (sz)), . . .}.

ÈzÉ = fst
ÈszÉ = fst ◦ snd
Ès (sz)É = fst ◦ snd ◦ snd
Ès (s (sz))É = fst ◦ snd ◦ snd ◦ snd
. . .

(21)

The type of an index is determined by the types of z and s in (20), which together recurse through Γ
until the index bottoms out at z. Whatever type is stored in that position is the type of the pronoun
in that context. We thus replace an in�nite class of lexical pronouns with a couple of grammatical
constructs.

This would be su�cient for the sort of simple, static, variable-free fragment we will demonstrate
in Section 3.2. But anticipating the transition to dynamic semantics in Section 5, we will need a
little bit more from our indices. In particular, we will want to generalize the inductive hierarchy so
that each index can be used either to access a particular coordinate of the state (as in (21)), or to
modify that coordinate instead.

Dual read/write operators like this are sometimes referred to as lenses in programming language
theory. For our purposes, we will take a lens to be a function of the form σ� (α × (β� τ)). Any
such function can be used as a projection from a state σ to a particular coordinate α, or alternatively
as a means of converting an item α in a state σ to an item of type β, yielding a new state τ. These
coercions are canonically called the get and mod operations of the lens. Formally, for any lens 𝑛,
we have:

get𝑛 := λ𝑠 . fst (𝑛𝑠)(22)
mod𝑛 := λ𝑓 .λ𝑠 . snd (𝑛𝑠) (𝑓 (fst (𝑛𝑠)))(23)

8

Di�erent data structures σ call for di�erent lenses. Since we are only interested in these nested
tuples modeling records of discourse reference, we de�ne all the lenses we could need inductively,
just as above. The initial index ‘Z’ targets the �rst coordinate of a context. And for any index 𝑛,
the index ‘R𝑛’ skips over the �rst element of a context, and uses 𝑛 to target a coordinate in the
remainder. Intuitively, this moves the cursor determined by 𝑛 one step to the right. Symmetrically,
‘L𝑛’ moves the cursor determined by 𝑛 one step to the left, though we will not have any need of
this until Section 6.1.

Z : α� (α × (β� β))
ÈZÉ := λ𝑎. 〈𝑎, λ𝑏.𝑏〉

R : (Γ� (α × (β� Η))) � (ξ, Γ) � (α × (β� (ξ, Η)))
ÈRÉ := λ𝑛.λ(𝑥,𝑔). 〈fst (𝑛𝑔), λ𝑏. (𝑥, snd (𝑛𝑔)𝑏)〉

L : (Γ� (α × (β� Η))) � (Γ, ξ) � (α × (β� (Η, ξ)))
ÈLÉ := λ𝑛.λ(𝑔, 𝑥) . 〈fst (𝑛𝑔), λ𝑏. (snd (𝑛𝑔)𝑏, 𝑥)〉

(24)

Together, ‘Z’ and ‘R’ can be used to walk the spine of a heterogeneous list to target any �nite
position, as in (25).

ÈZÉ = λ𝑎. 〈𝑎, λ𝑏.𝑏〉
ÈRZÉ = λ(𝑎,𝑔). 〈𝑎, λ𝑏. (𝑏,𝑔)〉
ÈR (RZ)É = λ(𝑥, (𝑎,𝑔)) . 〈𝑎, λ𝑏. (𝑥, (𝑏,𝑔))〉
ÈR (R (RZ))É = λ(𝑥, (𝑦, (𝑎,𝑔))). 〈𝑎, λ𝑏. (𝑥, (𝑦, (𝑏,𝑔)))〉
ÈR (R (R (RZ)))É = λ(𝑥, (𝑦, (𝑧, (𝑎,𝑔)))) . 〈𝑎, λ𝑏. (𝑥, (𝑦, (𝑧, (𝑏,𝑔))))〉
. . .

(25)

We may then recover the static, projective indices of the previous section from the getters of
these lenses. The conversion is given by the function var in (26), which turns any lens index 𝑛 built
from R and Z into the corresponding projection function built from s and z, as shown in (27).

var𝑛 = λ𝑔. fst (get𝑛𝑔)(26)
ÈzÉ := varÈZÉ

= λ(𝑎,𝑔).𝑎
ÈszÉ := varÈRZÉ

= λ(𝑥, (𝑎,𝑔)) .𝑎
Ès (sz)É := varÈR (RZ)É

= λ(𝑥, (𝑦, (𝑎,𝑔))) .𝑎
Ès (s (sz))É := varÈR (R (RZ))É

= λ(𝑥, (𝑦, (𝑧, (𝑎,𝑔)))).𝑎
. . .

(27)

Fittingly, it is only the capacity to update records that is new to the dynamic indices:

modÈZÉ = λ𝑓 .λ(𝑎,𝑔). (𝑓 𝑎, 𝑔)
modÈRZÉ = λ𝑓 .λ(𝑥, (𝑎,𝑔)) . (𝑥, (𝑓 𝑎, 𝑔))
modÈR (RZ)É = λ𝑓 .λ(𝑥, (𝑦, (𝑎,𝑔))). (𝑥, (𝑦, (𝑓 𝑎, 𝑔)))
modÈR (R (RZ))É = λ𝑓 .λ(𝑥, (𝑦, (𝑧, (𝑎,𝑔)))). (𝑥, (𝑦, (𝑧, (𝑓 𝑎, 𝑔))))
. . .

(28)

9

3.2 A static, variable-free fragment

Let us de�ne the syntax and semantics for a simple, familiar applicative grammar. An expression
in this grammar is either a lexical item drawn from some set L, a pronoun with an index, an
abstraction ⊲𝐸 (discussed below), or a concatenation of two sub-expressions. An index is either z or
the successor of another index. For readability, we abbreviate indices with numerals in the expected
way, such that pro𝑘 ≡ pro (s (. . . (s︸ ︷︷ ︸

𝑘-times

z) . . .)).

𝐸 = L | pro𝑁 | ⊲𝐸 | 𝐸𝐸
𝑁 = z | s𝑁, with 0 ≡ z, 1 ≡ sz, 2 ≡ s (sz), 3 ≡ s (s (sz)), . . .

(29)

Semantically, all is as expected. Here, and in the rest of the paper, we give denotations as
functions from derivations to semantic values. A derivation is a proof that a certain expression has
a certain type. To each inference rule of the type logic, we attach a corresponding semantic rule,
giving the denotation of the inference step as a function of the denotations of (the proofs of) its
premises. For instance, a rule of the form in (30) should be interpreted as saying that if you have a
proof that expression 𝐸1 has type α and another proof that expression 𝐸2 has type β, then you can
conclude that the expression 𝐸3 has type ς. (Note that [r] is just a name for the rule, for expository
purposes.) And the denotation of this derivation that 𝐸3 has type ς is given as a function of the
denotations of the derivations that 𝐸1 has type α and 𝐸2 has type β. We will often abbreviate È𝐸1 : αÉ
and È𝐸2 : βÉ on the right-hand side of the equals sign as È𝐸1É and È𝐸2É, with the understanding
that we mean the denotations of these expressions at the types speci�ed in the premises.�

𝐸1 : α 𝐸2 : β
[r]

𝐸3 : ς

�
:= . . . È𝐸1 : αÉ . . . È𝐸2 : βÉ . . .(30)

In practice, such proofs are just upside-down type-annotated trees, and interpreting a proof as a
function of its premises is just the same as interpreting a tree as a function of its daughters.

The denotations of lexical items are assumed to come from the lexicon. We write this as a
nullary rule, and assume all the lexical items we’ll introduce are typed as speci�ed and de�ned in L.�

[Lex]
𝐸 : σ

�
:= L (𝐸 : σ)(31)

Following Jacobson (1999), we may distinguish the type of functional dependency introduced
by a pronoun from that introduced by argument structure. So Γ⇒ α is the type of an expression
that will denote an α in a context of type Γ, while α� β is the type of an expression that will denote
a β if given an argument α. Semantically, both types corresponds to functions. Pronouns, therefore,
denote identity functions; they take their denotations directly from the projection functions de�ned
by ÈzÉ and ÈsÉ above.

pro : (Γ� α) � Γ⇒ α
ÈproÉ := λ𝑛.𝑛

(32)

The interpretation of a concatenation takes one of two forms, depending on the types of the
sub-expressions being concatenated. If they are context-independent (⇒-free) then one of them
simply takes the other as an argument, as in (33). Alternatively, if the daughters demand contexts
before returning functions and arguments, then they are combined via (34), which ensures that

10

both daughters are evaluated in the relevant context before one is applied to the other. Finally,
an expression containing pronominal dependencies may be combined with an ordinary context-
independent expression by coercing the latter into a constant function compatible with any context.
This coercion is given as the unary rule in (35).�

𝐹 : σ� τ 𝑋 : σ
[/]

𝐹 𝑋 : τ

�
:= È𝐹ÉÈ𝑋É�

𝑋 : σ 𝐹 : σ� τ
[\]

𝑋 𝐹 : τ

�
:= È𝐹ÉÈ𝑋É

(33)

�
𝐹 : Γ⇒ σ� τ 𝑋 : Γ⇒ σ

[�]
𝐹 𝑋 : Γ⇒ τ

�
:= λ𝑔.È𝐹É𝑔 (È𝑋É𝑔)�

𝑋 : Γ⇒ σ 𝐹 : Γ⇒ σ� τ
[�]

𝑋 𝐹 : Γ⇒ τ

�
:= λ𝑔.È𝐹É𝑔 (È𝑋É𝑔)

(34)

�
𝑋 : σ

[𝜂]
𝑋 : Γ⇒ τ

�
:= λ𝑔.È𝑋É(35)

This is enough to derive the denotations of basic sentences with free pronouns. For instance, if
the lexicon L includes at least (Mary : e) and (called : e � e � e � t) in its domain, then we can
derive the denotations of the sentences in (18).

[Lex]
called : e � e � t

[𝜂]
called : (e, Γ) ⇒ e � e � t

[z]
pro0 : (e, Γ) ⇒ e

[�]
calledpro0 : (e, Γ) ⇒ e � t

(36a)

[Lex]
Mary : e

[𝜂]
Mary : (e, Γ) ⇒ e

(36a)
...

calledpro0 : (e, Γ) ⇒ e � t
[�]

Marycalledpro0 : (e, Γ) ⇒ t

(36b)

È(36b)É = λ𝑔.call (fst𝑔)m(36c)

The derivation in (36b) demonstrates the e�ect of a free pronoun on the type of an expression.
What remains is to show that this type-theoretic signature disappears once the pronoun is bound.
To this end, let us introduce the type and semantics for a simple abstraction operator ⊲ in (37). It is
worth noting the type-theoretic push and pull between s and ⊲. The former takes an expression
𝑁 that depends on a context Γ, and yields an expression s𝑁 with a new, additional dependency
(α, Γ); the latter takes an expression 𝑀 which already depends on some object α of the context
(α, Γ), and converts that contextual dependency into an ordinary functional argument, thereby
loosening the requirements on the context Γ. The semantics of ⊲ should of course look quite similar
to that of any object-language abstraction operator. In fact, the de�nitions in (20), (34) and (37)
are exactly Carette, Kiselyov & Shan’s (2009) and Kiselyov’s (2012) semantics for the simply-typed
lambda calculus with de Bruijn indices in lieu of variables.�

𝑀 : (α, Γ) ⇒ τ
[⊲]

⊲𝑀 : Γ⇒ α� τ

�
:= λ𝑔.λ𝑎.È𝑀É (𝑎,𝑔)(37)

For instance, (36b) may be continued as in (38a) to derive the sentence ‘John, Mary called’,
construing pro0 as the trace of the topicalized object ‘John’.

11

[Lex]
John : e

[𝜂]
John : Γ⇒ e

(36b)
...

Mary called pro0 : (e, Γ) ⇒ t
[⊲]

⊲ Mary called pro0 : Γ⇒ e � t
[�]

John ⊲ Mary called pro0 : Γ⇒ t

(38a)

È(38a)É = λ𝑔.call jm(38b)

Being a variant of the lambda calculus, it is plain that the fragment de�ned in (34) and (37)
guarantees that there is no binding without c-command. All anaphors �nd their referents in the
context, and the only opportunity for an expression to manipulate the context is through ⊲. Likewise,
even more plainly, an expression may only quantify over an expression it is adjacent to, since the
only mode of combination is Function Application. We note that this is naturally exactly analogous
to the way binding works in a typical static variable-full grammar like the Logical Forms of Heim &
Kratzer (1998), which is also a variant of the lambda calculus, as well as the variable-free grammars
of Jacobson (1999, 2014, et seq.).

Scaling this up to a full grammatical framework for anaphora requires relaxation along both of
these dimensions. There must be a way for expressions to take as arguments other expressions that
contain them, and a way for antecedents to bind pro-forms across phrases. For example, in (39)
and (40), the properties that everyone is claimed to have are those of being talked to by Mary and
having a mother who talked to Mary, respectively. Both of these are assembled from constituents
dominating the universal. And the sentences in (41) and (42) have readings in which the referent of
‘them’ co-varies with the inde�nite in the preceding clause.

Mary talked to everyone(39)
Everyone’s mother talked to Mary(40)
John saw a student and told them to talk to Mary(41)
Everyone who saw a student told them to talk to Mary(42)

In other words, we need to enable at least some amount of scope and binding without c-command.
But of course, there be a few dragons here. Perhaps most famously, we have the crossover paradigm
in (43)–(46).

Everyone’s mother told someone to talk to Mary(43)
Everyone’s mother told them to talk to Mary(44)
Someone’s mother told everyone to talk to Mary(45)
*Their mother told everyone to talk to Mary(46)

In (43), the quanti�er embedded in the subject phrase can take scope over the verb phrase that it
does not c-command, and accordingly it can bind pronouns in that verb phrase, as in (44). Likewise
the quanti�er embedded in the verb phrase of (45) can take scope over the subject that it does not c-
command, but this time it cannot bind a pronoun in that subject (46). Consequently, we take it as a
minimum requirement of a theory of composition that scope-taking feed binding, so long as the
expression taking scope is to the left of the anaphor it is to bind (Barker 2012).

12

4 Continuations

Our starting point for integrating a theory of scope with the variable-free anaphoric semantics above
is Shan & Barker’s (2006) continuation-passing mode of combination. The technique provides an
attractive theory of inverse scope, crossover, and reconstruction, and the authors o�er compelling
criticisms of the ways in which other static and dynamic theories have built in these sorts of
evaluation order asymmetries. The reader is referred to Barker & Shan 2008 and Barker & Shan
2014 for summaries, applications, and tutorial introductions to the mechanism. For our purposes,
we need only introduce the following two technical notions.

First, essentially by de�nition, expressions that take scope have higher-order denotations, with
types of the form (α � ο) � ρ. That initial argument, called the continuation, or scope, of the
expression, intuitively encodes the function mapping lower-typed objects 𝑎 : α to whatever the
denotation of the enclosing syntactic environment ο would be if the expression were replaced by 𝑎.
We reserve a distinguished type constructor for denotations of this form.

ρ ο

α
::= (α� ο) � ρ(47)

For instance, ordinary Generalized Quanti�ers have type
t t

e
. They act locally like entities e, they

take scope over expressions that are either true or false of an entity, and they use this continuation,

of type e � t, to compute a truth value t. For an expression of type
ρ ο

α
, we will sometimes refer

to the type α as the expression’s local, or underlying, type. Again, loosely speaking, this is the type
that one would expect to �nd in the position where the scope-taking expression occurs.

Second, two expressions that both expect continuations may be composed to form a new
continuation-expecting expression, so long as their underlying types can be composed. Formally,
the rule schemas in (48) and (49) generalize any unary and binary modes of combination to higher-
order functions of the appropriate types.

If
�
𝑇 : σ

[†]
𝐸 : υ

�
= †È𝐶É, then

�������
𝑇 :
ρ ο

σ

[K-†]

𝐸 :
ρ ο

υ

������� = λ𝑘.È𝑇É (λ𝑥 .𝑘 (†𝑥)),(48)

If
�
𝐿 : σ 𝑅 : τ

[∗]
𝐸 : υ

�
= È𝐿É ∗ È𝑅É,

then

�������
𝐿 :
ρ π

σ
𝑅 :
π ο

τ

[K-∗]

𝐸 :
ρ ο

υ

������� = λ𝑘.È𝐿É (λ𝑙 .È𝑅É (λ𝑟 .𝑘 (𝑙 ∗ 𝑟))),

(49)

For instance, the unary rule in (35) gives rise to the continuation-passing rule in (50). And the
binary rules in (33) and (34) give rise to the rules in (51) and (52).

13

�������
𝑋 :
ρ ο

σ

[K-𝜂]

𝑋 :
ρ ο

Γ⇒ σ

������� := λ𝑘.È𝑋É (λ𝑥 .𝑘 (λ𝑔.𝑥))(50)

�������
𝐹 :
ρ π

σ� τ
𝑋 :
π ο

σ

[K-/]

𝐹 𝑋 :
ρ ο

τ

������� := λ𝑘.È𝐹É (λ𝑓 .È𝑋É (λ𝑥 .𝑘 (𝑓 𝑥)))(51)

�������
𝐹 :

ρ π

Γ⇒ σ� τ
𝑋 :

π ο

Γ⇒ σ
[K-�]

𝐹 𝑋 :
ρ ο

Γ⇒ τ

������� := λ𝑘.È𝐹É (λ𝑓 .È𝑋É (λ𝑥 .𝑘 (λ𝑔. 𝑓 𝑔 (𝑥 𝑔))))(52)

Note that because the schemas in (48) and (49) generate new unary and binary modes of
combination, they feed themselves. Thus we have a hierarchy of derived rules for combining
increasingly highly-typed expressions. For instance, applying (48) to (50) determines the rule in
(53). Likewise for the doubly-lifted version of function application in (54). And so on.������������

𝑇 :
ρ
′
ο
′

ρ ο

σ

[K2-𝜂]

𝑇 :
ρ
′
ο
′

ρ ο

Γ⇒ σ

������������
:= λ𝑐.È𝑇É (λ𝑇 ′.𝑐 (λ𝑘.𝑇 ′ (λ𝑥 .𝑘 (λ𝑔.𝑥))))(53)

������������
𝐿 :
ρ
′
π
′

ρ π

σ� τ
𝑅 :
π
′
ο
′

π ο

σ

[K2-/]

𝐿𝑅 :
ρ
′
ο
′

ρ ο

τ

������������
:= λ𝑐.È𝐿É (λ𝐿′.È𝑅É (λ𝑅′.𝑐 (λ𝑘.𝐿′ (λ𝑓 .𝑅′ (λ𝑥 .𝑘 (𝑓 𝑥))))))(54)

Finally, we must say how an ordinary expression of type σ may be combined with continuation-
taking expressions whose underlying type would �t together with σ. For this, Shan & Barker
introduce the operators U and D, which take expressions in and out of the scope-taking mode.���� 𝐸 : σ

[U]

𝐸 :
ρ ρ

σ

���� := λ𝑘.𝑘 È𝐸É(55)

14

���𝐸 :
ρ τ

τ

[D]
𝐸 : ρ

��� := È𝐸É (λ𝑡 . 𝑡)(56)

These operators, together with the continuation-passing rules induced by (48)/(49), and the
basic pronoun (20), application (34), and abstraction (37) rules above, su�ce to generate a wealth of
scope and binding con�gurations.�

everyone :
Γ⇒ t (e, Γ) ⇒ t

e

�
:= λ𝑘.λ𝑔.∀𝑥 .𝑘 𝑥 (𝑥,𝑔)(57)

[Lex]

everyone’s :
Γ⇒ t (e, Γ) ⇒ t

e

[Lex]mom : e � e
[U]

mom :
ρ ρ

e � e
[K-\]

eo’s mom :
Γ⇒ t (e, Γ) ⇒ t

e
[K-𝜂]

eo’s mom :
Γ⇒ t (e, Γ) ⇒ t

(e, Γ) ⇒ e

(36a)
...

called pro0 : (e, Γ) ⇒ e � t
[U]

called pro0 :
ρ ρ

(e, Γ) ⇒ e � t
[K-�]

eo’s mom called pro0 :
Γ⇒ t (e, Γ) ⇒ t

(e, Γ) ⇒ t
[D]

eo’s mom called pro0 : Γ⇒ t

(58a)

È(58a)É = λ𝑔.∀𝑥 .call𝑥 (mom𝑥)(58b)

Notice that the possessor here, ‘everyone’, binds the pronoun ‘pro0’ despite not c-commanding
it. This is possible because the quanti�er adds its referent to the environment that its scope is
evaluated in, and the pronoun falls into that scope. The relative derivational dominance of the two
items is made moot.

Unfortunately, as things stand, so is their linear order. The derivation in (59b) comes out
equivalent to that in (58a).

[Lex]
called : e � e � t

[U]

called :
ρ ρ

e � e � t

[Lex]

everyone :
Γ⇒ t (e, Γ) ⇒ t

e
[K-/]

called eo :
Γ⇒ t (e, Γ) ⇒ t

e � t
[K-𝜂]

called eo :
Γ⇒ t (e, Γ) ⇒ t

(e, Γ) ⇒ e � t

(59a)

15

[z]
pro0’s : (e, Γ) ⇒ e

[Lex]mom : e � e
[𝜂]

mom : (e, Γ) ⇒ e � e
[�]

pro0’s mom : (e, Γ) ⇒ e
[U]

pro0’s mom :
ρ ρ

(e, Γ) ⇒ e

(59a)
...

called eo :
Γ⇒ t (e, Γ) ⇒ t

(e, Γ) ⇒ e � t
[K-�]

pro0’s mom called eo :
Γ⇒ t (e, Γ) ⇒ t

(e, Γ) ⇒ t
[D]

pro0’s mom called eo : Γ⇒ t

(59b)

È(59b)É = λ𝑔.∀𝑥 .call𝑥 (mom𝑥)(59c)

Shan & Barker’s (2006) solution to this problem is twofold. First, they use the transparency
provided by the type system to restrict the use of D to expressions whose underlying types are
closed. Intuitively, this means expressions cannot scope over constituents with free pronouns in
them. Formally, they give D the much stricter type in (60), which operates only on constituents
with the concrete underlying type t. The restriction to underlying type t guarantees that only
context-independent clauses may serve as the continuation to an expression that has taken scope.���𝐸 :

ρ t

t
[D]

𝐸 : ρ

��� := È𝐸É (λ𝑎.𝑎)(60)

In the fragment we have outlined so far, this typing of D is slightly stricter than is required.
For one, there is nothing particularly special about the type t, as far as preventing crossover goes.
Really all that is required is that it not harbor free pronouns. To that end, any concrete,⇒-free type
would be �ne. Second, it does not matter whether the underlying type is formally context-sensitive
(begins with __ ⇒) or not; it just needs to be the case that the underlying type does not depend on
the shape of the context in any way. Any particular pronoun will place a particular constraint on
what its context should look like. Only a closed expression — one with no free pronouns — can
a�ord not to care. So any constituent ought to able to serve as the scope of an expression so long as
it places no demands on its anaphoric context, or equivalently, as long as it is compatible with any
anaphoric context whatsoever, including the empty context (). So with an eye toward the dynamic
analysis in Section 5, we o�er the variant of Shan & Barker’s lowering operation in (61).���𝐸 :

ρ Γ⇒ τ
() ⇒ τ

[D]
𝐸 : ρ

��� := È𝐸É (λ𝑚.λ𝑔.𝑚 ())(61)

This version of D empties the local context before evaluating its scope, passing in () instead. This
e�ectively thwarts the e�orts of the universal to pass in the augmented context (𝑥,𝑔) that might
value a free pronoun. Indeed, the only sorts of expressions evaluable in such amnesiac contexts are
those with no free pronouns at all.

With D so restricted, the derivation in (59b) is no longer valid. The �nal lowering step does not
have a type consistent with the D rule, since its underlying type is context dependent: (e, ()) ⇒ t.
Sadly this also invalidates the derivation in (58a), since it has exactly the same �nal step.

16

So the second half of Shan & Barker’s (2006) solution is to lift the type of pronouns so that
they too become scope-takers. They do this in the lexical semantics of the pronoun, but again
anticipating Section 5, we o�er a more modular approach, supplementing our compositional regime
with [★]. Together, 𝜂 and ★ comprise a monad (Charlow 2014, 2019b).���� 𝐸 : Γ⇒ σ

[★]

𝐸 :
Γ⇒ τ Γ⇒ τ

σ

���� := λ𝑘.λ𝑔.𝑘 (È𝐸É𝑔)𝑔(62)

The [★] rule converts an expression of type Γ⇒ σ to an expression of type
Γ⇒ τ Γ⇒ τ

σ
. It is to

context-dependent expressions what U is to pure expressions. This can be seen by simply ignoring
all of the Γ⇒’s in the types and 𝑔’s in the denotation.1 This opens up a second derivation of the
verb phrase in (58a), shown in (63a). The key is the last step of (63b). Just before this step, the
underlying type of the sentence is completely unconstrained in its choice of environment Γ′. Since
Γ
′ is just a type variable, it is free to unify with () so that the [D] rule can apply.

[Lex]
called : e � e � t

[U]

called :
ρ ρ

e � e � t

[z]
pro0 : (e, Γ) ⇒ e

[★]

pro0 :
(e, Γ) ⇒ t (e, Γ) ⇒ t

e
[K-\]

called pro0 :
(e, Γ) ⇒ t (e, Γ) ⇒ t

e � t

(63a)

[Lex]

eo’s :
Γ⇒ t (e, Γ) ⇒ t

e

[Lex]mom : e � e
[U]

mom :
ρ ρ

e � e
[K-\]

eo’s mom :
Γ⇒ t (e, Γ) ⇒ t

e

(63a)
...

called pro0 :
(e, Γ) ⇒ t (e, Γ) ⇒ t

e � t
[K-\]

eo’s mom called pro0 :
Γ⇒ t (e, Γ) ⇒ t

t
[K-𝜂]

eo’s mom called pro0 :
Γ⇒ t (e, Γ) ⇒ t

Γ
′ ⇒ t

[D]
eo’s mom called pro0 : Γ⇒ t

(63b)

È(63b)É = λ𝑔.∀𝑥 .call𝑥 (mom𝑥)(63c)

Of course, a hopped-up derivation analogous to (59b) is also possible. But it does not result in
any binding. Because the pronoun occurs to the left of the quanti�er that would bind it, it simply

1 Note that the binary rules in (34) become otiose in the presence of [★], [𝜂], and [K-/]. Any derivational step
𝐹 𝑋

[�]
𝐹 𝑋

can

be replaced by

𝐹
[★]

𝐹

𝑋
[★]

𝑋
[K-/]

𝐹 𝑋
[K-𝜂]

𝐹 𝑋
[D]

𝐹 𝑋

with no change in type or meaning.

17

outscopes that quanti�er. As a result, the modi�cation that ‘everyone’ makes to its local context
does not amount to anything, and the anaphoric dependence introduced by the pronoun lives on.
This is shown in (64b). Alternatively, if the object quanti�er were lifted to take inverse scope over
the pronoun, the derivation would become un-lowerable, just like (59b).

[Lex]
called : e � e � t

[U]

called :
ρ ρ

e � e � t

[Lex]

everyone :
Γ⇒ t (e, Γ) ⇒ t

e
[K-/]

called eo :
Γ⇒ t (e, Γ) ⇒ t

e � t

(64a)

[z]
pro0’s : (e, Γ) ⇒ e

[★]

pro0 :
(e, Γ) ⇒ t (e, Γ) ⇒ t

e

[Lex]mom : e � e
[U]

mom :
ρ ρ

e � e
[K-\]

pro0’s mom :
(e, Γ) ⇒ t (e, Γ) ⇒ t

e

(64a)
...

called eo :
Γ⇒ t (e, Γ) ⇒ t

e � t
[K-\]

pro0’s mom called eo :
(e, Γ) (e, (e, Γ)) ⇒ t

t
K-[𝜂]

pro0’s mom called eo :
(e, Γ) (e, (e, Γ)) ⇒ t

Γ
′ ⇒ t

[D]
pro0’s mom called eo : (e, Γ)

(64b)

È(64b)É = λ(𝑎,𝑔).∀𝑥 .call𝑥 (mom𝑎)(64c)

This account of crossover has several attractive qualities. It is variable-free, so not tied to any
particular indexing scheme or representational assumptions. It explains crossover in terms of general
left-to-right evaluation order, but unlike dynamic accounts that purport to do the same, it includes a
full-�edged treatment of scope inversion. And it lends itself to elegant treatments of reconstruction
which would otherwise appear to counterexemplify the crossover pattern in (43)–(46).

But it is fundamentally a static semantics, in that it yokes binding to scope. That is, in order
for a binder to value a pronoun, that pronoun must be part of the continuation passed in as an
argument to the binder. If the binder is quanti�cational, then the pronoun must occur as part of the
content that the binder semantically quanti�es over. These assumptions face prima facie challenges
from standard cross-clausal and donkey con�gurations.

John saw a student and told them to talk to Mary(65)
Everyone who saw a student told them to talk to Mary(66)

At the same time, even as pronouns may co-vary with inde�nites that do not scope over them, they
still generally resist binding from anything to their right. Thus we have the “secondary” crossover
paradigm in (67).

Some farmer described every donkey they own to Mary(67a)
Mary described some donkey to every farmer who asked about it(67b)

18

Every farmer who owns a donkey described it to Mary(67c)
*Mary described it to every farmer who owns a donkey(67d)

Barker & Shan 2008 have pursued an inventive static account of (65)–(67), maintaining the
connection between scope and binding, and eschewing traditional dynamic explanations for the
relationship between inde�nites and downstream pronouns. Here we ask if it is possible to go the
other way, to relax the connection between scope and binding in the familiar spirit of dynamic
semantics, while maintaining the idea that crossover is ultimately a consequence of the way that
scope-takers combine with their scopes. We do this partly because of theoretical and empirical
objections raised against the Barker & Shan 2008 account of donkey anaphora, and partly to establish
that in-scope binding is not explanatorily essential to a genuinely semantic (variable-free) analysis
of crossover.

5 Indexed state

Leveling up from a static to a dynamic semantics is, at a minimum, as simple as replacing denotations
that read from a context with denotations that both read from and return a context. That is, where
in the previous section we might have had an expression of type ι� α, we should now expect to
�nd an expression of type ι� α × ο. But given the special role that inde�nites play in discourse,
nearly all dynamic frameworks for anaphora treat the transition from input states to output states
as relational rather than functional. Thus we actually want to replace expressions of type ι� α
with expressions of type ι� {α × ο}. We notate such nondeterministic transitions as ι α⇒ ο.

Unsurprisingly, the paradigmatic denotations exemplifying this dynamic type are those of
inde�nites. Let us assume (for a second) that DPs like ‘a cat’ always update the discourse by adding
an entity to the context for downstream anaphora. Of course which entity is added is a matter of
uncertainty, so the updates happen in parallel so to speak, one per potential witness to the inde�nite
description. This leads to denotations like (68). The type Γ e⇒ (e, Γ) reveals the context updating
nature of the expression; if the context has type Γ before the expression is evaluated, it will have
type (e, Γ) after it is evaluated, no matter what type Γ is.

a cat : Γ e⇒ (e, Γ)
Èa catÉ := λ𝑔. {〈𝑥, (𝑥, 𝑔)〉 | cat𝑥}

(68)

every cat : Γ
t⇒ Γ (e, Γ) t⇒ Η

e
Èevery catÉ := λ𝑘λ𝑔. {〈∀𝑥 .cat𝑥 � ∃ℎ. 〈T, ℎ〉 ∈ 𝑘 𝑥 (𝑥, 𝑔), 𝑔〉}

(69)

The architecture of the grammar presented in Sections 3 and 4 needn’t change at all. We simply
upgrade any rule involving context-dependent denotations so that it may record and/or pass on
contexts (potentially nondeterministically) in addition to reading from them. For the 𝜂 and ★ rules,
this is mostly just a matter of type plumbing.�

𝐸 : τ
[𝜂]

𝐸 : Γ τ⇒ Γ

�
:= λ𝑔. {〈È𝐸É, 𝑔〉}(70) ����� 𝐸 : Γ σ⇒ Η

[★]

𝐸 : Γ
τ⇒ Θ Η τ⇒ Θ
σ

����� := λ𝑘.λ𝑔.
⋃{𝑘 𝑥 ℎ | 〈𝑥, ℎ〉 ∈ È𝐸É𝑔}(71)

19

While the static 𝜂 and★ operations form a monad (as mentioned in Section 4), the dynamic versions
of these operations can be used to build and sequence computations parameterized to input and
output types, which can crucially di�er (note the Γ, Η, and Θ in the entry for★). This is a consequence
of our contention that dref introduction and consumption both result in changes to the type of
the discourse record. As such, the dynamic 𝜂 and ★ instantiate a more general construction than a
monad, variously known as a parameterized or indexed monad (Wadler 1994, Atkey 2009).

The abstraction rule [⊲] in (37) is engineered to convert a constituent containing a pronoun into
a nuclear scope, binding that pronoun by adding the scope’s argument to the local context in which
its prejacent is evaluated. As discussed above, this has the consequence that binding is only possible
from an argument to its scope (“in-scope binding”), since it is the argument of the abstraction ⊲𝐸

that provides the relevant referent for the pronoun in 𝐸. In upgrading this rule, we take advantage
of the new dynamics. The rule in (72) simply augments a context Γ with the denotation of an
arbitrary expression 𝐸. Since this outgoing state containing the referent of 𝐸 will persist, there is
no need for 𝐸 to interact directly with a constituent containing a to-be-bound pronoun.�

𝐸 : α
[⊲]

𝐸⊲ : Γ α⇒ (α, Γ)

�
:= λ𝑔. {〈È𝐸É, (È𝐸É, 𝑔)〉}(72)

Nothing about the function application or continuation-passing rules for scope-taking were speci�c
to context-dependence, and they can be reused without any ado here. The same is true of the lifting
type-shifter U. All that remains is to discuss the semantics of pronouns, and then to adjust the
lowering operator D along the lines of (70)–(72) above.

5.1 Dynamic pronouns

Recall the polymorphic index functions in Section 3.1, repeated here in (73)–(74).

Z : α� (α × (β� β))
ÈZÉ := λ𝑎. 〈𝑎, λ𝑏.𝑏〉

R : (Γ� (α × (β� Η))) � (ξ, Γ) � (α × (β� (ξ, Η)))
ÈRÉ := λ𝑛.λ(𝑥,𝑔). 〈fst (𝑛𝑔), λ𝑏. (𝑥, snd (𝑛𝑔)𝑏)〉

L : (Γ� (α × (β� Η))) � (Γ, ξ) � (α × (β� (Η, ξ)))
ÈLÉ := λ𝑛.λ(𝑔, 𝑥) . 〈fst (𝑛𝑔), λ𝑏. (snd (𝑛𝑔)𝑏, 𝑥)〉

(73)

ÈZÉ = λ𝑎. 〈𝑎, λ𝑏.𝑏〉
ÈRZÉ = λ(𝑎,𝑔). 〈𝑎, λ𝑏. (𝑏,𝑔)〉
ÈR (RZ)É = λ(𝑥, (𝑎,𝑔)) . 〈𝑎, λ𝑏. (𝑥, (𝑏,𝑔))〉
ÈR (R (RZ))É = λ(𝑥, (𝑦, (𝑎,𝑔))). 〈𝑎, λ𝑏. (𝑥, (𝑦, (𝑏,𝑔)))〉
ÈR (R (R (RZ)))É = λ(𝑥, (𝑦, (𝑧, (𝑎,𝑔)))). 〈𝑎, λ𝑏. (𝑥, (𝑦, (𝑧, (𝑏,𝑔))))〉
. . .

(74)

Up to this point, we have only made use of the get functionality of these lenses, treating them
as an inductively de�ned family of projection functions. But the dynamic lexical entry for pronouns,

20

given in (75), �nally takes advantage of their state-updating functionality as well.

pro : (Γ� ((α, β) × (β� Η))) � Γ α⇒ Η
ÈproÉ := λ𝑛.λ𝑔. {〈var𝑛𝑔,mod𝑛 snd𝑔〉}

(75)

The argument to this pronoun is a lens built from Z, L, and R, and until Section 6.1, we will assume it
is in fact just one of the Z and R lenses spelled out in (74). With such a lens in hand, the pronoun in
(75) will do two things. First, it locates an element α from some position in the state Γ, and returns
that α as its computed referent. Second, it passes on a modi�ed state Η in which α has been removed.
In short, a pronoun pops its referent o� the stack for use in local composition. For instance:

ÈproZÉ = λ(𝑎,𝑔). {〈𝑎,𝑔〉}
Èpro (RZ)É = λ(𝑥, (𝑎,𝑔)). {〈𝑎, (𝑥,𝑔)〉}
Èpro (R (RZ))É = λ(𝑥, (𝑦, (𝑎,𝑔))). {〈𝑎, (𝑥, (𝑦,𝑔))〉}
Èpro (R (R (RZ)))É = λ(𝑥, (𝑦, (𝑧, (𝑎,𝑔)))). {〈𝑎, (𝑥, (𝑦, (𝑧, 𝑔)))〉}
. . .

(76)

There are two reasons for having the pronoun remove its referent from the context. One is that
it guarantees paycheck pronouns (and the other sorts of sloppy derivations discussed in Section 7)
will be well-de�ned. No two pronouns can access the same state. Whichever one goes �rst will
change the state that the second one sees. In particular, the sorts of self-referential operations
identi�ed by Muskens (1995) cannot arise. When a pronominal computation projects a value 𝑣 out
of a context 𝑔, the context is immediately changed; in particular, 𝑣 is removed from 𝑔. So even if 𝑣 is
itself a pronominal computation, the new context that it is evaluated in will not contain 𝑣 anymore,
so circularity is impossible.

The other reason is to keep the fragment as close to static presentations of variable-free semantics
as possible. Recall that in frameworks like those of Szabolcsi (1989), Jacobson (1999), and Shan
& Barker (2006), pronominal dependencies are, semantically, just functional dependencies, and
binding is just a matter of passing a value as an argument to a bindee. But then, there is a clear sense
in which each “referent” that the grammar conjures up can only value a single pronoun, namely,
the one whose open argument it saturates. Even so, there are still two ways that a single binder
may come to co-vary with multiple pronouns. First, one pronoun may bind another. Second, since
⊲ is a fully polymorphic, productive operation, it may apply more than once to a single expression.
In terms of mechanics, these are very similar, as shown by the parallel derivations in (77).

Again for readability, we abbreviate indiceswith numerals, such that pro𝑘 ≡ pro (R (. . . (R︸ ︷︷ ︸
𝑘-times

Z) . . .)).

[z]
pro0 : (e, Γ)

e⇒ Γ
[★]

pro0 :
(e, Γ)

τ⇒ Η Γ τ⇒ Η
e

[K-⊲]

(pro0)⊲ :
(e, Γ)

τ⇒ Η Γ τ⇒ Η
Ι

e⇒ (e, Θ)

[Lex, ⊲]
Mary⊲ : Γ e⇒ (e, Γ)

[★]

Mary⊲ : Γ
τ⇒ Η (e, Γ)

τ⇒ Η
e

[K-⊲]

(Mary⊲)⊲ : Γ
τ⇒ Η (e, Γ)

τ⇒ Η
Ι

e⇒ (e, Θ)

(77)

With these ingredients, we can put together basic binding derivations as in (78):

21

[Lex]
called : e � e � t

[U]

called :
ρ ρ

e � e � t

[z]
pro0 : (e, Γ)

e⇒ Γ
[★]

pro0 :
(e, Γ)

τ⇒ Η Γ τ⇒ Η
e

[K-/]

called pro0 :
(e, Γ)

τ⇒ Η Γ τ⇒ Η
e � t

(78a)

[Lex]
someone’s : Γ e⇒ (e, Γ)

[★]

so’s : Γ
τ⇒ Η (e, Γ)

τ⇒ Η
e

[Lex]mom : e � e
[U]

mom :
ρ ρ

e � e
[K-\]

so’s mom : Γ
τ⇒ Η (e, Γ) τ⇒ Η

e

(78a)
...

called pro0 :
(e, Γ)

τ⇒ Η Γ τ⇒ Η
e � t

[K-\]

so’s mom called pro0 :
Γ
τ⇒ Η Γ τ⇒ Η

t
[K-𝜂]

so’s mom called pro0 :
Γ
τ⇒ Η Γ τ⇒ Η
σ

t⇒ σ

(78b)

È(78b)É = λ𝑘.λ𝑔.
⋃{𝑘 (λ𝑖 . {〈call𝑥 (mom𝑥), 𝑖〉})𝑔 | 𝑥 ∈ 𝐷}(78c)

The �nal continuation passed into the denotation of (78b) will be determined by the lowering
operation D. For instance, if we were to evaluate È(78b)É at the identity function, we would get the
update λ𝑔. {〈call𝑥 (mom𝑥), 𝑔〉 | 𝑥 ∈ 𝐷}. At any input context 𝑔, this update would return, for each
individual 𝑥 , the proposition that 𝑥 ’s mother called 𝑥 , together with the output context 𝑔. Assuming,
as is standard, that such an update is true if any of its witnesses is true, this is exactly as desired.

But just as in Section 4, choosing to pass an identity function as the �nal step of evaluation
would render it impossible to distinguish between (78b) and (79).

*Their mother called someone(79)

In both cases, we would have an inde�nite binding a pronoun in virtue of outscoping it, and thereby
augmenting the context in which the pronoun is evaluated. So the �nal ingredient of our analysis,
to which we turn in the next section, is an adaptation of D to the dynamic setting.

6 Crossover

In Section 4, we showed that a straightforward way to guarantee that scope does not feed backward
binding is to completely wipe the input context before executing the underlying meaning. The rule
in (80) pursues the same idea.����𝐸 :

ρ Γ
σ⇒ (Η, Γ)

()
σ⇒ Η

[D]
𝐸 : ρ

���� := È𝐸É (λ𝑚.λ𝑔. {〈𝑥, (ℎ,𝑔)〉 | 〈𝑥, ℎ〉 ∈𝑚 ()})(80)

22

This rule is more similar to the static lowering semantics in Section 3 than it might seem at �rst
blush. If the rule were written as in (81) instead, it would in fact be equivalent, since {〈𝑥, ℎ〉 |
〈𝑥, ℎ〉 ∈𝑚 ()} =𝑚 ().����𝐸 :

ρ Γ
σ⇒ (Η, Γ)

()
σ⇒ Η

[D]
𝐸 : ρ

���� := È𝐸É (λ𝑚.λ𝑔. {〈𝑥, ℎ〉 | 〈𝑥, ℎ〉 ∈𝑚 ()})(81)

The only di�erence is that in this setting, where modi�cations to the context can have long-term
e�ects on the discourse, we do not want to completely throw away the incoming state𝑔. Downstream
pronouns may yet wish to reference it. So we do the obvious thing and append it behind the new
referents introduced by𝑚, which are stored in its output ℎ.

Returning to (78b), notice that the underlying type at the �nal stage of the derivation is com-
pletely polymorphic in its input: σ t⇒ σ. This means that in particular, it is compatible with the
concrete type () t⇒ (). This type can feed the D rule de�ned in (80), completing the derivation as
in (82a):

(78b)
...

so’s mom called pro0 :
Γ
τ⇒ Η Γ τ⇒ Η
()

t⇒ ()
[D]

so’s mom called pro0 : Γ
t⇒ ((), Γ)

(82a)

È(82a)É = λ𝑔. {call𝑥 (mom𝑥) ((), 𝑔) | 𝑥 ∈ 𝐷}(82b)

On the other hand, crossover con�gurations inevitably run afoul of the type requirements for
D. For instance, the derivation in (83) goes as far as it can in giving ‘someone’ inverse scope over
a pronoun that it would bind. But this binding will never succeed because the would-be nuclear
scope of the inde�nite does not have an appropriate type.

23

[z]
pro0’s : (e, Γ)

e⇒ Γ
[★]

pro0’s :
(e, Γ)

τ⇒ Η Γ τ⇒ Η
e

[Lex]mom : e � e
[U]

mom :
ρ ρ

e � e
[K-\]

pro0’s mom : (e, Γ)
τ⇒ Η Γ τ⇒ Η
e

[U]

pro0’s mom :
ρ ρ

(e, Γ)
τ⇒ Η Γ τ⇒ Η
e

...

called someone : Γ
′ τ

′
⇒ Η′ (e, Γ′)

τ
′

⇒ Η′
e � t

[K-U]

called someone :
Γ
′ τ

′
⇒ Η′ (e, Γ′)

τ
′

⇒ Η′
ρ
′
ρ
′

e � t
[K2-\]

pro0’s mom called so :
Γ
′ τ

′
⇒ Η′ (e, Γ′)

τ
′

⇒ Η′

(e, Γ)
τ⇒ Η Γ τ⇒ Η
t

[K2-𝜂]

pro0’s mom called so :
Γ
′ τ

′
⇒ Η′ (e, Γ′)

τ
′

⇒ Η′

(e, Γ)
τ⇒ Η Γ τ⇒ Η

()
t⇒ ()

[K-D]

pro0’s mom called so : Γ
′ τ

′
⇒ Η′ (e, Γ′)

τ
′

⇒ Η′

(e, Γ)
t⇒ ((), Γ)

(83)

The e�ective precedence predictions for binding extend immediately to secondary crossover.
Without belaboring the details of donkey anaphora, assume the denotation of a complex DP like
‘every dog with a toy’ is as in (84). The crucial thing to note is that the scope of the quanti�er will
be evaluated in a context that begins with referents for the dog and the toy.

every dog with a toy : Γ
t⇒ Γ (e, (e, Γ))

t⇒ Η
e

Èevery dog with a toyÉ = λ𝑘.λ𝑔. {〈∀𝑥∀𝑦.dog𝑥 ∧ toy𝑦 ∧with𝑦𝑥 → 𝑘 𝑥 (𝑥, (𝑦,𝑔)), 𝑔〉}

(84)

The verb phrase ‘buried pro1’ demands as input a context containing at least two elements, the
second of which is an entity. Since this is exactly the sort of context that the universal to its left
provides, composition is seamless. The referent passed in by the quanti�er values the pronoun, and
the relevant truth conditions are returned.

every dog with a toy : Γ
t⇒ Γ (e, (e, Γ))

t⇒ Η
e

buried pro1 :
(α, (e, Γ))

τ⇒ Η (α, Γ)
τ⇒ Η

e � t
[K-\]

every dog with a toy buried pro1 :
Γ

t⇒ Γ (e, Γ)
t⇒ Η

t
[K-𝜂]

every dog with a toy buried pro1 :
Γ

t⇒ Γ (e, Γ)
t⇒ Η

()
t⇒ ()

[D]
every dog with a toy buried pro1 : Γ

t⇒ Γ

(85a)

24

È(85a)É = λ𝑔. {〈∀𝑥∀𝑦.dog𝑥 ∧ toy𝑦 ∧with𝑦𝑥 → bury𝑦𝑥,𝑔〉}(85b)

An attempt at binding from right to left would require inverse scope. The problem here is no
di�erent than in the primary crossover con�guration: lowering is ill-typed. It makes no di�erence
that the o�ending binding would come from a nested, “donkey” inde�nite. The issue is simply that
constituents with unbound pronouns do not have the right types to serve as nuclear scopes.

pro1 :
(α, (e, Γ′))

τ⇒ Η′ (α, Γ′)
τ⇒ Η′

e
[U]

pro1 :
ρ
′
ρ
′

(α, (e, Γ′))
τ⇒ Η′ (α, Γ′)

τ⇒ Η′
e

delighted every dog with a toy : Γ
t⇒ Γ (e, (e, Γ))

t⇒ Η
e � t

[K-U]

delighted every dog with a toy :
Γ

t⇒ Γ (e, (e, Γ))
t⇒ Η

ρ ρ

e � t
[K-\]

pro1 delighted every dog with a toy :
Γ

t⇒ Γ (e, (e, Γ))
t⇒ Η

(α, (e, Γ′))
τ⇒ Η′ (α, Γ′)

τ⇒ Η′
t

[K2-𝜂]

pro1 delighted every dog with a toy :
Γ

t⇒ Γ (e, (e, Γ))
t⇒ Η

(α, (e, Γ′))
τ⇒ Η′ (α, Γ′)

τ⇒ Η′

()
t⇒ ()

[K2-D]

pro1 delighted every dog with a toy :
Γ

t⇒ Γ (e, (e, Γ))
t⇒ Η

(α, (e, Γ′))
t⇒ ((), (α, Γ′))

(86)

6.1 Gorn indices

Look again at the lowering rule in (80). As described above, the outputs of the nuclear scope Η are
added to the input context Γ in one whole chunk. This is done largely because it is the simplest
imaginable way to get them onto the record that gets passed along to subsequent discourse. One
consequence of this decision is that the context is no longer strictly right-branching, i.e., list-
structured. It is, instead, tree-structured.2

2 The context could also easily be linearized right at the point of lowering, so that it always remains right-branching (i.e., list-
like). Then this section could be deleted, and the rest of the analysis would carry on unchanged. We just need an operator
that concatenates two right-branching contexts. Such an operator is de�ned recursively in (87), which doubles as both a
type- and value-level de�nition of concatenation. Then the semantics of [D] simply swaps out (ℎ,𝑔) for ℎ⌢𝑔, as in (88).

()⌢ℎ := 𝑔

(𝑎,𝑏)⌢𝑔 := (𝑎,𝑏⌢𝑔)
(87)

����𝐸 :
ρ Γ

σ⇒ Η⌢Γ
()

σ⇒ Η
[D]

𝐸 : ρ

���� := È𝐸É (λ𝑚.λ𝑔. { 〈𝑥,ℎ⌢𝑔〉 | 〈𝑥,ℎ〉 ∈𝑚 () })(88)

The only hitch is that the concatenation operator ⌢ is not technically parametric in its polymorphism. Its type would
contain type variables that range over some but not all types (namely, all and only tuple types in its �rst argument). This is
the sort of ad hoc polymorphism familiar from Generalized Conjunction. It adds no expressive power to the type system,
but does mean that type constraints (e.g., Γ is a tuple) need to be tracked in the inference rules. We opt for the branching
state instead to sidestep this, but it is completely inconsequential.

25

Loosely speaking, each evaluation domain will start its own left branch. For instance, the
discourse in (89a) might naturally emerge as in (89b), drawn more graphically in (89c), assuming
each clause corresponds to a single evaluation domain, or scope island.

’A’ precedes ’B’, and ’C’ precedes ’D’, and ’E’ precedes ’F’.(89a)
((f, (e, ())), ((d, (c, ())), (b, (a, ()))))(89b)

f
e () d

c ()
b
a ()

(89c)

That said, the picture here, though illustrative of the canonical e�ect, should be taken with a grain of
salt. The exact location of a referent in the context will depend on the �ne details of the derivation,
since those details are determined partly by scope and evaluation order, which can vary “spuriously”
(without truth-conditional consequences) across derivations. For instance, there is an even simpler
derivation of (89a) in which the referents do in fact emerge in a descending list, despite forced
evaluation at each clause boundary.

To complete the semantics, we simply allow indices to range over any well-typed combination of
L, R, and Z. Since L and R are lens modi�ers, and Z is a lens, it is clear such well-typed combinations
will always be of the form 𝑙1 (𝑙2 (𝑙3 (𝑙4 . . .Z))), where each 𝑙𝑖 is either L or R. In other words, an
index is e�ectively a string of L’s and R’s, concluded by a Z. Such strings may quite literally be read
as Gorn addresses for the nodes of a tree, where L and Z mean go Left, and R means go Right.

For instance, in order to grab e from the state in (89c), starting from the root, you’d need to go
Left, then Right, then Left. And indeed, the pronoun ‘pro (L (RZ))’ : ((φ, (ε, Θ)), Γ) ε⇒ ((φ, Θ), Γ)
will grab, and remove, e from (89c). To target c instead, you’d need to go Right, then Left, then Right,
then Left. The corresponding pronoun ‘pro (R (L (RZ)))’ : (Γ, ((δ, (ς, Θ)), Η)) ς⇒ (Γ, ((δ, Θ), Η))
will do just that: extract and eliminate ς from the state in (89c). And in general, every sequence of
L’s and R’s will correspond to a node in some tree of referents, and every node but one in such a
tree will correspond to some sequence of L’s and R’s. The only inaccessible coordinate is the very
rightmost leaf (since all indices end in Z, which is a step to the left). But no discourse antecedent
can ever end up in that position because pushing a value with ⊲ always prepends that value to a
context. This guarantees that any remembered referent is always to the left of something.

We will not make any interesting use of the tree-structured state, and in the remainder, we
continue to use numeral abbreviations on pronouns: pro𝑘 ≡ pro (R (. . . (RZ) . . .)), with 𝑘-many R’s.

7 Cross-categorial anaphora

One of the motivations for the framework developed here is the patent prima facie need for
discourse referents of di�erent types. But so far all of the examples have stuck to plain entities.
Generalizing these examples to other kinds of �rst-order objects requires no ingenuity, thanks to
the polymorphism of the interpretation rules. The example in (90), for instance, derives ordinary
VP-ellipsis. Here, the ellipsis gap is treated as a pronoun with exactly the same semantics as in all
the examples so far. For clarity, since this is a pro-VP rather than a pronoun, we write did0 instead
of pro0.

26

[Lex]
Mary : e

[U]

Mary :
ρ ρ

e

[Lex]
called : e � t

[⊲]
called : Γ e�t⇒ (e � t, Γ)

[★]

called : Γ
τ⇒ Η (e � t, Γ)

τ⇒ Η
e � t

[K-\]

Mary called : Γ
τ⇒ Η (e � t, Γ)

τ⇒ Η
t

(90a)

È(90a)É = λ𝑘.λ𝑔.
⋃{𝑘 (callm) (call, 𝑔)}(90b)

[Lex]
John : e

[U]

John :
ρ ρ

e

[z]
did0 : (e � t, Γ)

e�t⇒ Γ
[★]

did0 :
(e � t, Γ)

τ⇒ Η Γ τ⇒ Η
e � t

[K-\]

John did0 :
(e � t, Γ)

τ⇒ Η Γ τ⇒ Η
t

(90c)

È(90c)É = λ𝑘.λ(𝑃,𝑔). ⋃{𝑘 (𝑃 j)𝑔}(90d)

(90a)
...

Mary called : Γ
τ⇒ Η (e � t, Γ)

τ⇒ Η
t

[Lex]
and : t � t � t

[U]

and :
ρ ρ

t � t � t

(90c)
...

John did0 :
(e � t, Γ)

τ⇒ Η Γ τ⇒ Η
t

[K-/]

and John did0 :
(e � t, Γ)

τ⇒ Η Γ τ⇒ Η
t � t

[K-\]

Mary called and John did0 :
(e � t, Γ)

τ⇒ Η Γ τ⇒ Η
t

[K-𝜂]

Mary called and John pro0 :
(e � t, Γ)

τ⇒ Η Γ τ⇒ Η
()

t⇒ ()
[D]

Mary called and John pro0 : (e � t, Γ)
t⇒ ((), Γ)

(90e)

È(90e)É = λ𝑔. {〈callm ∧ call j, ((), 𝑔)〉}(90f)

7.1 Higher-order anaphora

More interesting are cases of higher-order anaphora, including sloppy binding, paycheck pronouns,
and verb phrase ellipsis with inversely scoping elements. The key to all of these cases is that the [⊲]
operation is entirely unconstrained in what kinds of referents it can add to the discourse context.
In particular, it can add denotations that are themselves dynamic. When these updates are retrieved
and executed, the anaphoric elements inside will be executed in a di�erent environment than when
they were stored.

To illustrate this, assume that a pronoun-containing VP like ‘called her mom’ can be derived at
type π ≡ (e, Ι)

e�t⇒ Ι. This is the type of an update that pops an entity o� the discourse state in
determining a particular property, e.g., the property of calling that entity’s mom. Since this context-

27

sensitive property is the meaning that a sloppy understanding of verb phrase ellipsis invokes, we
push this entire update onto the context.

...

called pro0’s mom : π
[⊲]

(called pro0’s mom)⊲ : Γ π⇒ (π, Γ)
[★]

(called pro0’s mom)⊲ : Γ
τ⇒ Η (π, Γ)

τ⇒ Η
π

[K-★]

(called pro0’s mom)⊲ :
Γ
τ⇒ Η (π, Γ)

τ⇒ Η
(e, Ι)

τ
′

⇒ Θ Ι τ
′

⇒ Θ
e � t

(91a)

È(91a)É = λ𝑘.λ𝑔.𝑘 (λ𝑐.λ(𝑥, 𝑖).𝑐 (call (mom𝑥)) 𝑖) (P, 𝑔)
where P = Ècalled pro0’s momÉ = λ(𝑥, 𝑖). {〈call (mom𝑥), 𝑖〉}

(91b)

The derivation in (91a) yields an expression whose underlying type is e � t, so it can compose
where ordinary properites are expected. But it also performs two actions in the computation of
that property. The outer action, documented on the top level of the type’s tower, adds the function
P = Ècalled pro0’s momÉ to the discourse state. The inner action, documented in the middle layer
of the type’s tower, executes P in a context containing a referent for the pronoun pro0, just as it
would in isolation. This referent may indeed be provided by the subject of the VP, as in (92a).

[Lex]
Mary : e

[⊲]
Mary⊲ : Ι e⇒ (e, Ι)

[★]

Mary⊲ : Ι
τ⇒ Θ (e, Ι)

τ⇒ Θ
e

[U]

Mary⊲ :
ρ ρ

Ι
τ⇒ Θ (e, Ι)

τ⇒ Θ
e

(91a)
...

(called pro0’s mom)⊲ :
Γ
τ⇒ Η (π, Γ)

τ⇒ Η
(e, Ι)

τ
′

⇒ Θ Ι τ
′

⇒ Θ
e � t

[K2-\]

Mary⊲ (called pro0’s mom)⊲ :
Γ
τ⇒ Η (π, Γ)

τ⇒ Η
Ι
τ⇒ Θ Ι τ⇒ Θ

t

(92a)

There are two things to note about the �nal type in (92a). First, the outermost layer indicates
that the dynamic meaning of the VP will be added to the input context. Second, the middle layer
reveals that binding from the subject to the object was successful. In particular, the VP’s middle-
layer dependence on an input of type (e, Ι) has been eliminated, so that the input is now completely
free. This is because the subject’s output is guaranteed to be of the form (e, Ι), no matter the input
Ι, since it will add a referent for Mary to the front of the state.

Composition of a subsequent clause containing an elliptical VP is structurally similar to the
composition of (92a). The only thing notable about it is that in order for the composition to work

28

out, the ellipsis site’s polymorphic type will be resolved so that it is expecting the �rst coordinate
of its input context to contain a denotation that is itself dynamic (type π ≡ (e, Ι)

e�t⇒ Ι). This of
course will end up being the dynamic VP that the previous clause adds. Again for clarity we write
pro0 as ‘did0’ in the second clause.

[z]
did0 : (π, Γ)

π⇒ Γ
[★]

did0 :
(π, Γ)

τ⇒ Η Γ τ⇒ Η
π

[K-★]

did0 :
(π, Γ)

τ⇒ Η Γ τ⇒ Η
(e, Ι)

τ
′

⇒ Θ Ι τ
′

⇒ Θ
e � t

(93a)

È(93a)É = λ𝑘.λ(𝜋,𝑔).𝑘 (λ𝑐.λ(𝑥, 𝑖). ⋃{𝑐 𝑃 𝑖 ′ | 〈𝑃, 𝑖 ′〉 ∈ 𝜋 (𝑥, 𝑖)})𝑔(93b)

Again, because the pro-VP is expecting a dynamic property as its referent, that property will have
to be executed in a local context. In particular, since it is a dynamic property of type π, that local
context had better contain an entity in its �rst position. That entity will be popped o� the context
and used to construct an ordinary property for the second clause. Crucially, the entity provided
to the local context of the retrieved VP may contain a new referent pushed onto the stack by the
second clause’s subject. This is shown in (94a).

[Lex]
Sue : e

[⊲]
Sue⊲ : Ι e⇒ (e, Ι)

[★]

Sue⊲ : Ι
τ⇒ Θ (e, Ι)

τ⇒ Θ
e

[U]

Sue⊲ :
ρ ρ

Ι
τ⇒ Θ (e, Ι)

τ⇒ Θ
e

(93a)
...

did0 :
(π, Γ)

τ⇒ Η Γ τ⇒ Η
(e, Ι)

τ
′

⇒ Θ Ι τ
′

⇒ Θ
e � t

[K2-\]

Sue⊲ did0 :
(π, Γ)

τ⇒ Η Γ τ⇒ Η
Ι
τ⇒ Θ Ι τ⇒ Θ

t

(94a)

Conjoining (92a) and (94a) yields the intended e�ect.

29

(92a)
...

Mary⊲ (called pro0’s mom)⊲ :
Γ
τ⇒ Η (π, Γ)

τ⇒ Η
Ι
τ⇒ Θ Ι τ⇒ Θ

t

[Lex]
and : t � t � t

[U]

and :
ρ ρ

t � t � t
[U]

and :
ρ
′
ρ
′

ρ ρ

t � t � t

(94a)
...

Sue⊲ did0 :
(π, Γ)

τ⇒ Η Γ τ⇒ Η
Ι
τ⇒ Θ Ι τ⇒ Θ

t
[K2-\, K2-/]

Mary⊲ (called pro0’s mom)⊲ and Sue⊲ did0 :
Γ
τ⇒ Η Γ τ⇒ Η

Ι
τ⇒ Θ Ι τ⇒ Θ

t

(95a)

Here we can see several things. The outer anaphoric e�ect — the binding of the pro-VP by the
antecedent VP — has been successful. The �rst clause introduced it to the context, and the second
clause used it. The inner layer reveals two successful bindings, the pronoun in the antecedent VP
by the �rst subject, Mary, and the pronoun in the recycled VP by the second subject, Sue. The
underlying type reveals we have computed a truth value. Lowering twice gives (96b).

(95a)
...

Mary⊲ (called pro0’s mom)⊲ and Sue⊲ did0 :
Γ
τ⇒ Η Γ τ⇒ Η

Ι
τ⇒ Θ Ι τ⇒ Θ

t
[K-D]

Mary⊲ (called pro0’s mom)⊲ and Sue⊲ did0 :
Γ
τ⇒ Η Γ τ⇒ Η
Ι

t⇒ ((), Ι)
[D]

Mary⊲ (called pro0’s mom)⊲ and Sue⊲ did0 : Γ
t⇒ (((), ()), Γ)

(96a)

È(96a)É = λ𝑔. {〈call (momm)m ∧ call (moms) s, (((), ()), 𝑔)〉}(96b)

The derivation of paycheck binding is almost exactly the same as the sequence of derivations
in (92a)–(96a). The only di�erence in deriving (97), for example, is that instead of pushing the
dynamic VP ‘spent pro0’s paycheck’ to the outer layer, we would push just the dynamic object
‘pro0’s paycheck’. And instead of a pro-VP ‘did0’ in the second clause, we’d have a pronoun ‘pro0’.
But aside from trivially exchanging the underlying types of the pro-forms and antecedents from
e�t (in the case of VPE) to e (in the case of the paycheck pronoun), the dynamic types are identical.

Mary spent her paycheck; Sue saved it(97)

The same holds mutatis mutandis for VPs that contain sloppily bound VPs, rather than sloppily
bound pronouns, as in (98) (Hardt 1999, Schwarz 2000).

Mary cooks because she likes to; Sue cooks even though she doesn’t(98)

Again, the derivation is nearly identical to that of (96a). It’s just a matter of swapping in the relevant
underlying types.

Inverse scope “out of” an elided VP follows the same pattern. We lean on the polymorphism of
context modi�cation to store a quanti�cational discourse referent. When that referent is recovered,

30

it is evaluated in an environment where the stored quanti�cational element has higher precedence
than its surroundings. Assume that a quanti�er-containing VP like ‘called everyone’ can be derived

at type κ ≡ Ι
t⇒ Ι Ι t⇒ Θ
e � t

. Such a VP meaning can be pushed onto the state whole hog.

[Lex]
a nurse : Μ e⇒ Μ

[★]

a nurse : Μ
σ⇒ Ν Μ σ⇒ Ν

e
[U, U]

a nurse :

ο ο

ρ ρ

Μ
σ⇒ Ν Μ σ⇒ Ν

e

...

called everyone : κ
[⊲]

(called everyone)⊲ : Γ κ⇒ (κ, Γ)
[★]

(called everyone)⊲ : Γ
τ⇒ Η (κ, Γ)

τ⇒ Η
κ

[≡]

(called everyone)⊲ :
Γ
τ⇒ Η (κ, Γ)

τ⇒ Η
Ι

t⇒ Ι Ι t⇒ Θ
e � t

[K2-U]

(called everyone)⊲ :

Γ
τ⇒ Η (κ, Γ)

τ⇒ Η
Ι

t⇒ Ι Ι t⇒ Θ
χ χ

e � t
[K3-\]

a nurse (called everyone)⊲ :

Γ
τ⇒ Η (κ, Γ)

τ⇒ Η
Ι

t⇒ Ι Ι t⇒ Θ
Μ
σ⇒ Ν Μ σ⇒ Ν

t
[K3-𝜂, K2-D, K-D, D]

a nurse (called everyone)⊲ : Γ t⇒ (. . . , (κ, Γ))

(99a)

È(99a)É = λ𝑔. {〈∀𝑥 .∃𝑦.nurse𝑦 ∧ call𝑥𝑦, (. . . , (Q, 𝑔))〉}
where Q = Ècalled everyoneÉ = λ𝑘.λ𝑖 . {〈∀𝑥 .∃ 𝑗 . 〈T, 𝑗〉 ∈ 𝑘 (call𝑥) 𝑖, 𝑖〉}

(99b)

The signi�cant e�ect of the derivation in (99a) is to add the denotation of ‘called everyone’ to
the outgoing discourse context. The rest of the derivation computes the truth conditions associated
with the inverse-scope reading of ‘a nurse called everyone’, as revealed in (99b). As in the matching
derivations of clauses in the prior ellipsis examples, a subsequent clause with VPE can be derived
so that it is missing exactly the sort of thing that (99a) provides. This is shown in (100a).

31

[Lex]
a doctor : Μ e⇒ Μ

[★]

a doctor : Μ
σ⇒ Ν Μ σ⇒ Ν

e
[U, U]

a nurse :

ο ο

ρ ρ

Μ
σ⇒ Ν Μ σ⇒ Ν

e

[sz]
did1 : (α, (κ, Γ))

κ⇒ (α, Γ)
[★]

did1 :
(α, (κ, Γ))

τ⇒ Η (α, Γ)
τ⇒ Η

κ

[≡]

did1 :
(α, (κ, Γ))

τ⇒ Η (α, Γ)
τ⇒ Η

Ι
t⇒ Ι Ι t⇒ Θ
e � t

[K2-U]

did1 :

(α, (κ, Γ))
τ⇒ Η (α, Γ)

τ⇒ Η
Ι

t⇒ Ι Ι t⇒ Θ
χ χ

e � t
[K3-\]

a doctor did1 :

(α, (κ, Γ))
τ⇒ Η (α, Γ)

τ⇒ Η
Ι

t⇒ Ι Ι t⇒ Θ
Μ
σ⇒ Ν Μ σ⇒ Ν

t
[K3-𝜂, K2-D, K-D, D]

a doctor did1 : (α, (κ, Γ))
t⇒ (. . . , (α, Γ))

(100a)

È(100a)É = λ(𝑎, (𝑄,𝑔)).𝑄 (λ𝑃 .λ𝑖 . {〈𝑃 𝑥, (. . . , 𝑖)〉 | doc𝑥}) (. . . , (𝑎,𝑔))(100b)

The output type of (99a) indicates that the result of evaluating this clause will contain a quan-
ti�cational property. The input type of (100a) indicates that this clause will need to be evaluated in
a context containing a quanti�cational property. Running the �rst clause and second clause in se-
quence, the output of the former satis�es the input of the latter, and the dependency is eliminated.
The variable 𝑄 in (100b) is resolved to the lifted property Ècalled everyoneÉ de�ned in (99a).

(99a)

.

.

.

a nurse (called eo)⊲ : Γ t⇒ (. . . , (κ, Γ))
[★]

a nurse (called eo)⊲ : Γ
τ⇒ Η (. . . , (κ, Γ))

τ⇒ Η
t

[Lex]
and : t � t � t

[U]

and :
ρ ρ

t � t � t

(100a)

.

.

.

a doc did1 : (α, (κ, Γ))
t⇒ (. . . , (α, Γ))

[★]

a doc did1 :
(α, (κ, Γ))

τ⇒ Η (. . . , (α, Γ))
τ⇒ Η

t
[K-/, K-\]

a nurse called (called eo)⊲ and a doc did1 :
Γ
τ⇒ Η (. . . , (α, Γ))

τ⇒ Η
t

[K-𝜂, D]
a nurse (called eo)⊲ and a doc did1 : Γ

t⇒ (. . . , (α, Γ))

(101a)

8 Discussion and comparison

The fragment outlined above draws on a great body of semantic research concerning scope and
binding, more than we can or should talk about. In this section, we highlight and juxtapose a few
important points of contact with the literature.

32

8.1 Hardt (1999) and other theories of ellipsis

Our semantics for sloppy ellipsis and paycheck anaphora is essentially that of Hardt 1999, but the
fragment here improves upon Hardt’s in several ways. First, we make no use of centering theory.
Types aside, the dynamic semantics is rather vanilla. Discourse referents are pushed to the front of
a context, but there is no privileged theoretical role to being in this position, and no referent is ever
over-written by another. This is important because, as Sauerland (2007) points out, there can be
more than one sloppy pronoun in a single ellipsis site:

When a graduate student submits a paper, we expect them to have proofread it.
But when an undergraduate submits an assignment, we don’t.

(102)

If each sloppily-retrieved antecedent had to be stored in a distinguished, destructively updated
position, then one of the new referents in (102) would delete the other before its pronoun was able
to retrieve it.3

Sauerland (2007) also points out that the antecedents of sloppy ellipsis sites may contain the
traces of overtly extracted material, as in (103).

What John eats depends on what Mary does.
But what John drinks doesn’t.

(103)

If the ellipsis site in the �rst clause is identi�ed with a simple pro-VP (so that it can be sloppily
re-bound in the second clause), then it is unclear how it’s supposed to bear the relevant syntactic
relationship with the fronted relative pronoun ‘what’. One solution to this is to follow Shan & Barker
(2006) in treating the semantics of extraction gaps as yet another species of pronoun. Then, ellipsis
to the body of a relative clause, as in (103) is no di�erent than any other kind of sloppy ellipsis,
semantically speaking. Of course the distribution of trace gaps should be quite carefully constrained
to prevent, say, free or strict readings of traces, but plausibly this can be handled with a �ner-grained
type theory, one that distinguishes trace-dependencies from pronominal-dependencies (cf. our
distinction in Section 3.1 between⇒ and �, or Shan & Barker’s distinction between e)α and e ⊲ α).

We might also add that where (103) shows that an expression can be overtly extracted from a
Hardtian pro-VP, (104) shows that an expression can also be covertly scoped out of one.

When Mary orders one of everything, John tries to as well.
But when Mary orders two of everything, he doesn’t.

(104)

We needn’t say anything new to capture this, though. The derivation of (104) follows straight-
forwardly from the derivations of (96) and (99). Again the only di�erence between (96) and the
derivation of (104) will be in the types of the pronouns and the discourse referents. In this case,
the ellipsis in the �rst clause represents anaphora to a quanti�cational property, as in (104). This
entire ‘tries to0’ meaning is then added to the context, creating a referent that is itself a dynamic re-
quest for a higher-order antecedent. When this referent is retrieved at doesn’t0, that request will be
ful�lled by the local higher-order meaning of ‘order two of everything’.

In a related vein, a signi�cant challenge for anaphoric/semantic approaches to ellipsis such as
Hardt’s and ours has traditionally been the existence of case-matching e�ects in ellipsis, in which
an elided XP assigns case to material “extracted out of” it exactly as if the XP was syntactically
instantiated but unpronounced (e.g., Merchant 2001, Jäger 2005, Barker 2013). The type-transparency

3 We note that Hardt 1993, the precursor to Hardt 1999, did not make use of “center” indices, and did not have this problem.

33

of our semantics, in which the presence of unbound variable elements inside an expression is visible
in the expression’s type, allows us to account for these patterns. We begin by re�ning type e
with a range of case-indexed subtypes eNOM, eDAT, etc. Then, for example, an accusatively typed
gap of overt movement can be assigned type gap0,ACC : (eACC, Γ)

eACC⇒ Γ, re�ecting the fact that its
antecedent/binder must also be accusatively typed, at least in languages with more robust case
matching requirements than English.4 It follows that a VP hosting an unbound extraction gap, e.g.,
a VP with type (eACC, Γ)

e�t⇒ Γ, will likewise announce the type of this expected �ller, and similarly
for any discourse referents generated by such VPs in order to anchor downstream ellipsis. If an
elliptical pro-VP, like a gap, inherits the type of its antecedent, then a gapped pro-VP will constrain
the type of its �ller in exactly the same way as the antecedent gapped VP does, as desired.

Conversely, semantic theories of ellipsis are well suited to explaining various striking parallels
between ellipsis and run-of-the-mill pronominal anaphora. As we have already seen in (98), VPs,
like pronouns, can be sloppily bound. Like pronouns, elided VPs also give rise to covarying readings
under focus-sensitive operators, donkey anaphora, and quanti�cational/modal subordination:

I only JUMPED when you did
cf. Only JOHN did his homework

(105)

When Oscar uses the copier or talks on the phone, I can’t
cf. Whenever I see a linguist, I wave to ’em

(106)

Everyone ran 20 miles or biked 100 miles, and everyone later wished they hadn’t
cf. Every student wrote an article, and every student sent it to L&P

(107)

In the interest of space, we do not o�er detailed analyses of these examples here (but see Charlow
2012). We simply note that a theory of ellipsis oriented around dynamic binding, such as our
own, is well positioned to explain the parallels between ellipsis and pronominal anaphora, while
traditional syntactic theories of ellipsis may face challenges explicating what the elided content in
these examples is supposed to be, and on what basis it is allowed to go unpronounced.

In sum, type transparency coupled with a dynamic-anaphoric approach to ellipsis seems to
occupy a sweet spot in the design space. The resulting theory inherits many of the strengths of
syntactic and semantic theories of ellipsis, while avoiding common pitfalls of both.

8.2 Büring (2004) and Chierchia (2020)

Turning to crossover, the treatment here as a manifestation of the general asymmetries imposed
by dynamic interpretation is in much the same spirit as recent work by Chierchia (2020). But
the mechanisms that regulate referent introduction, and scope, and therefore crossover, are very
di�erent. Perhaps most importantly, Chierchia assumes a transformational theory of scope-taking
and hypothesizes that scope never feeds binding. Discourse referents are introduced (for the most
part) by thematic heads and lexical predicates. Crucially, they are not introduced by the semantics
of any DP, or any type-shifted DP, or any abstraction operator responsible for creating the scope of
any DP. Since pronouns are bound to discourse referents, and discourse referents are simply not
introduced by scope-shifting mechanisms, there is no crossover.

4 In contrast, a regular old accusative pronoun would have type pro0,ACC : (e, Γ)
eACC⇒ Γ. It functions as an eACC, but doesn’t

impose any sorts of case restrictions on its binder. For details on how treating eACC as a proper subtype of e allows this
outcome, see the discussions of subtyping in Bernardi & Szabolcsi 2008, Charlow 2017.

34

As Chierchia notes, what actually prevents crossover in his fragment is the strati�cation of
pronouns — which pick their referents out of the context — and traces — which are valued by a
separate assignment function. The former are shifted by predicates, which push their arguments as
referents onto the context; the latter is shifted by the object-language abstractions used to build
scopes for quanti�ers. This trick has precedents in at least Butler 2003 (building on Dekker 1994)
and Büring 2004, who both also use it to prevent crossover.

The dynamic substrate of Chierchia’s semantics is actually quite beside the point, as far as
crossover is concerned, as witnessed by the fact that Büring’s (2004) very similar analysis is static.
The only thing the dynamics buys is the ability of objects to bind into adjuncts, as in (108).5 If
adjuncts like this are just conjuncts, and conjunction is dynamic, then the binding without c-
command here is predicted.

The dean interviewed every student in the presence of their advisor.(108)

In particular, one of the things the dynamics does not buy Chierchia is garden-variety cases of
donkey anaphora. This is because Chierchia, like Büring (2004), is forced to say that there is no
binding out of DP. That is, none of the examples in (109) can constitute genuine cases of binding.

Every student who wrote a paper submitted it.(109)
The dean of no college despises its students.(110)
Every student’s advisor tries to help them.(111)

The reason is that in each case, a quanti�er would have to pass a discourse referent one way or
another into its scope, but this is crucially forbidden. Instead, Chierchia, again like Büring, adopts
an E-type approach to donkey anaphora. Chierchia’s particular E-type �avor is a hybrid combining
a traditional Cooper (1979)-style salient function with Elbourne (2005)-style NP ellipsis, as sketched
in (112).

[Every student who wrote a paper]𝑖 submitted 𝑓 (𝑖) (paper)(112)

The NP ellipsis assumption is meant to guarantee that the pronoun has an actual linguistic
antecedent, a “formal link” to the preceding discourse. But it also creates di�culties in exactly the
kinds of sloppy con�gurations analyzed in the previous section. Indeed, all of the pronouns in (109)
can be interpreted sloppily (Tomioka 1999), as in (113).

Every student who wrote a paper submitted it. Every student who wrote a squib did too.(113a)
The dean of no humanities division despises its students. But the dean of every sciences
division does.

(113b)

5 Chierchia argues that dynamic semantics explains the di�erence between traces and pronouns — they have di�erent types,
because they are valued by di�erent parameters (the assignment function and the context, respectively), where Büring
simply stipulates this di�erence. But this does not seem particularly fair. It’s true that Büring evaluates all expressions
relative to a single assignment, which values traces and pronouns alike, but that assignment is formally segregated into two
entirely distinct sets of indices. It has, in e�ect, two domains, one for the variables attached to traces and the other for the
variables attached to pronouns. This is clearly equivalent to having two distinct assignment parameters, one of which could
be identi�ed as the discourse context. Neither formalism explains by itself why traces and pronouns should run on di�erent
tracks, as it were, but both can claim to be implementations of whatever does.

Incidentally, the continuation semantics used here for scope-taking probably does have some explanatory purchase on
distinguishing traces from pronouns, because there are no traces. Quanti�ers “bind” their argument positions by being in
them. It doesn’t even make sense to ask why they don’t bind pronouns through the same mechanism.

35

Every freshman’s avidsor tries to help them. As does every senior’s advisor.(113c)

To get the right interpretation of (113a), for example, the ellipsis site would have to contain
‘submitted 𝑓 (𝑖) (squib)’, but this VP does not occur in the antecedent. These sorts of examples
motivate a genuinely dynamic account of donkey anaphora just as they do a dynamic account of
ellipsis!

In any case, there is also good reason to think scope does in fact feed binding (Chierchia 2005,
Barker 2012, Charlow 2019b), as the examples in (109) suggest. Chie�y, an embedded inde�nite can
antecede a (donkey / cross-clausal) pronoun if and only if the inde�nite is not in the scope of any
intervening (static) operators. For instance, consider the paradigm in (114).

Every time we chose to exclude a sample, we marked it with an X.(114a)
Every time we chose not to include a sample, we marked it with an X.(114b)
Every time we chose to exclude every sample, we marked it with an X.(114c)

The sentence in (114a) is an ordinary instance of donkey anaphora. According to Chierchia, its
interpretation depends on the recovery of a salient function 𝑓 from times to samples, say one that
maps each time 𝑡 to a sample we excluded at 𝑡 . If there were times when we rejected multiple
samples, then there will be more than one such function. In this case, Chierchia suggests that, as a
default, we take it that all such functions ought to make the sentence true (that way we don’t have
to make an arbitrary choice).

The sentence in (114b) also has an ordinary donkey reading, on which it means exactly the
same thing as (114a): namely, on those occasions when there was at least one sample that we chose
not to include, we marked (all) such samples with an X. Crucially, here the inde�nite takes inverse
scope over the negation above it. There is no reading of (114b) that quanti�es only over situations
in which no samples were included.

Is this correlation between scope and binding predicted by the Cooper (1979) analysis of the
pronoun? It’s hard to see why it would be. Presumably one would have say that (114b) does not
make any function from times to samples salient. But why would that be? Why not choose the very
same functions as in (114a), the ones that map times 𝑡 to samples excluded at 𝑡? There might be
more than one, but that was the case in (114a) as well. Universally quantifying over them so as not
to choose arbitrarily would render the sentence true if every time we excluded every sample, we
marked every such excluded sample with an X. There’s nothing weird about this reading; it just
isn’t something (114b) can mean.

For that matter, (114c) also seems problematic. It has no donkey reading at all. That pronoun in
the scope must be free. The familiar dynamic explanation for this is that ‘every sample’, unlike ‘a
sample’ is externally static, so no discourse referent is passed from the restrictor to the scope. But
there’s nothing that rules out ellipsis to the embedded NP; cf. (115).

Every time we chose to exclude every sample, we made sure to mark Bill’s with an X an
everyone else’s with a Y

(115)

Then it should just be a matter of �nding some salient functions from times to samples. Again,
functions from times 𝑡 to samples excluded at 𝑡 seem as reasonable here as in the previous cases,
and again, universally quantifying over these would yield the truth conditions that whenever all
samples were excluded, all excluded samples were marked with an X.

36

A few words on the argument here. First, there’s nothing special about negation per se (pace
Elliott 2020). The same paradigm could be constructed with any operator that forces the inde�nite
to take inverse scope in order to bind a pronoun. Second, what we’ve pointed out in connection to
(114) is a potential overgeneration problem for the static account of donkey anaphora, but the claim
we want to support is that the broader prohibition on binding from scope positions in fact creates
an undergeneration problem. The logic is this: the only reason that successful donkey binding is
correlated with the inde�nite taking widest scope in the restrictor is that this is the only position
from which its discourse referents will be accessible to the pronoun. But this presupposes that it
creates discourse referents where it scopes.

Finally, the particular assumptions that Chierchia makes about the syntax-semantics interface
(which are standard), coupled with his hypothesis that referents are only created in thematic
positions (which is non-standard), conspire to rule out any obvious derivation for sentences like
(116). This would seem to be a problem for Büring (2004) as well.

A referee rejected every paper she reviewed.(116)

The sentence should have a surface-scope reading, true if some referee exercised a blanket policy of
rejection for her assignments. The problem is that the universal quanti�er, being in object position,
must scope over the subject to be interpreted, and then the subject must scope over the universal
in order to get the truth conditions right (the harsh referee does not vary with papers). But in
moving over the subject position, the universal will carry the pronoun in its restrictor along with it.
Ordinarily, the raised subject could still bind that pronoun, since it outscopes it, but it would have
to do so from its scope position, as the discourse referent introduced by the subject trace is too low
to bind the raised object NP. Presumably some sort of reconstruction could be appealed to, but it is
notable that such appeal is necessary.

In contrast, the analysis we’ve presented here is dynamic through and through, allows scope to
feed binding, and therefore binding out of DP in both its donkey and inverse-linking varieties.

8.3 Barker & Shan (2008)

Our analysis incorporates what we take to be the fundamental insight about crossover from Shan
& Barker (2006) and Barker & Shan (2008): that when semantic types track scope inversions, the
grammar can prevent inverse binding parametrically. Like the previous authors, we use continua-
tions to stratify e�ects into levels. Discourse referents �ow from left-to-right per level, and never
from top-to-bottom. Since scope inversion would require a top-to-bottom transmission of refer-
ents, it is impossible. Also like the previous authors, we guarantee that binding is a polymorphic
and type-transparent process. Any kind of value can be pushed for downstream anaphora, and the
types of expressions containing pushed referents, as well as the types of expressions containing
unbound pronouns, di�er from those of pure expressions. Moreover, referents in both fragments
constitute a linear resource; they are consumed in the course of binding.

But unlike Barker & Shan (2008), we assume a dynamic semantics in the traditional sense that
donkey inde�nites do not outscope their donkey pronouns. Instead, they modify contexts, and those
context updates will either thread their way through a discourse, valuing pronouns as they go, or
will be captured and quanti�ed over by various operators. This avoids a number of overgeneration
issues that threaten Barker & Shan’s split-scope analysis, detailed in Charlow 2010 and Barker
& Shan 2014: Ch. 10. It also permits a simple characterization of what happens at scope island
boundaries: all continuation arguments must be saturated, so that towers are fully lowered. This

37

guarantees that every quanti�er will have combined with a scope, which prevents any further
scope-taking. But it does not prevent information from �owing through the state, which is what
inde�nites and pronouns use to communicate. See Charlow 2014 for discussion.

8.4 Dynamic Semantics

Architecturally speaking, the fragment here is extremely close to that of Charlow 2014. The
di�erence is in the types and the system of pronouns that give rise to those types. Charlow models
contexts as �at lists of values. Pronouns use integers as indices to target particular positions in the
list. As in many other sequence-based dynamic theories (e.g., Vermeulen 1993, Dekker 1994, van
Eijck 2001), the relationship between pronouns and their antecedents is variable-free, in the sense
that binders and bindees share no formal or syntactic connection. That is, even though there is
indexation on the pronouns, there is no co-indexation between the pronouns and their antecedents.
As Dekker (2012) puts it, the indices are fundamentally indexical.

But the sequence-encoding of contexts does not �t very cleanly into simple type systems. Most
dynamic frameworks simply restrict contexts to a single type (e), which guarantees well-typedness
(presuming indices on pronouns never outrun the lengths of contexts), but is clearly not up to
the tasks of Section 7. Allowing heterogeneous lists, as in Charlow 2014, opens the semantic door
to all of the phenomena that we’ve derived, but at some cost in type safety or type complexity
(see the discussion in Section 2). One contribution of this paper, then, is to recover those static
type assurances while still permitting higher-order anaphora (see also Charlow 2019a for another
way to go). In addition, having an articulated type structure for contexts provides exactly the
information needed to prevent crossover, since the grammar can now see the di�erence between a
pure expression and an expression with an anaphoric dependency.

But we should also point out that these two contributions are to some extent dissociable.
Obviously one could choose to adopt the parametrized monadic dynamic semantic framework with
polymorphic, statically-typed, heterogeneous contexts as we’ve laid it out, but seek a di�erent
explanation for crossover phenomena. But one could also adopt something very close to our analysis
of crossover without going all in on the monadic semantics. The fundamental mechanism by which
crossover is prevented is that when expressions are lowered, the inner computations (which are in
the process of being scoped over) are executed in an empty context. That’s really it.

Say, for instance, you wanted a more traditional view of context change, so that dynamic
meanings are simply relations on �nite maps (partial assignments) from variables to entities. You
could certainly in principle combine this with a continuation account of scope inversion (though,
without monads, anything with a dynamic e�ect will have to be a quanti�er, so islands will get
sticky). Then all you have to do to prevent crossover is to make sure that lower-levels of towers are
run with empty maps. Let T ≡ s� s� t stand for the type of relations on variable maps s. And say
we have the following lexical entries.

called : e � e � T
ÈcalledÉ = λ𝑑λ𝑒λ𝑔λℎ.𝑔 = ℎ ∧ call𝑑 𝑒

(117a)

pro𝑢 ’s mom : (e � T) � T
Èpro𝑢 ’s momÉ = λ𝑃λ𝑔λℎ.𝑃 𝑔𝑢 𝑔ℎ

(117b)

everyone𝑢 : (e � T) � T
Èeveryone𝑢É = λ𝑄λ𝑔λℎ.𝑔 = ℎ ∧ ∀𝑑.𝑄𝑑𝑔𝑢 ↦→𝑑 ℎ

(117c)

38

Then, we can keep all the continuation rules exactly as above (the ones that start with [K]), and
�x a version of [D] for the contexts-as-maps denotations.���𝐸 :

ρ T

T
[D]

𝐸 : ρ

��� := È𝐸É (λ𝑚.λ𝑔.λℎ.∃ 𝑗 .𝑚 ∅ 𝑗 ∧ ℎ = 𝑔 ∪ 𝑗)(118)

As desired, this rule runs 𝑚, the computation that is being scoped over, in an empty context ∅.
Whatever output contexts 𝑗 emerge from that computation are merged with the current input 𝑔, and
life continues. This ensures that crossed-over pronouns, as in (119) will not pick up the discourse
referents introduced by subsequent expressions.

pro𝑢 ’s mom :
T T

e
[U]

pro𝑢 ’s mom :
ρ ρ

T T

e

...

called everyone𝑢 :
T T

e � T
[K-U]

called everyone𝑢 :
T T

ρ
′
ρ
′

e � T
[K2-\]

pro𝑢 ’s mom called everyone𝑢 :
T T

T T

T
[K-D]

pro𝑢 ’s mom called everyone𝑢 :
T T

T
[D]

pro𝑢 ’s mom called everyone𝑢 : T

(119)

Of course, what we lose in this presentation is type-safety! Anaphorically active denotations
have type T. So do pure, pronoun-free denotations. There’s no way for the grammar to know
whether the lower-level meaning can really compute what it needs to compute in the context of an
empty map. So well-typed programs may crash. Indeed, crossover con�gurations like the one in
(119) certainly will. We take no stand on whether grammatical-but-meaningless is a defensible way
to think about crossover violations. The point here is just that something in the semantic spirit of
the Shan & Barker (2006) story about crossover can be replicated in a variety of systems.

9 Conclusion

In this paper we’ve tried to do two main things. First, we’ve parameterized the monadic dynamic
semantics of Charlow 2014, so that input and output context types can di�er. Taking advantage of
this, we de�ned a pair of combinators z and s that generate typed lenses for reading and modifying
contexts of various types, and we have identi�ed these lenses as the meanings of pronominal indices.
Together with the parameterized state, such lenses ensure that the types of expressions reveal exactly
what sorts of dynamic e�ects they execute. This allows for well-typed cross-categorial dynamic
e�ects, including the higher-order anaphora seen in sloppy binding phenomena, without threat of
the semantics becoming paradoxical. Second, we’ve exploited the newfound type transparency to
supplement this dynamic grammar with ideas from variable-free semantics concerning crossover,

39

in e�ect generalizing Shan & Barker’s (2006) treatment of crossover and superiority to a dynamic
setting. Thus we combine a very successful and well-studied approach to cross-clausal and donkey
binding with a very successful approach to scope and evaluation-order asymmetries, all within a
directly compositional framework with a simple theory of types.

References

Atkey, Robert. 2009. Parameterised notions of computation. Journal of Functional Programming 19(3-4). 335–
376. https://doi.org/10.1017/S095679680900728X.

Barker, Chris. 2012. Quanti�cational binding does not require c-command. Linguistic Inquiry 43(4). 614–633.
https://doi.org/doi:10.1162/ling_a_00108.

Barker, Chris. 2013. Scopability and sluicing. Linguistics and Philosophy 36(3). 187–223. https://doi.org/10
.1007/s10988-013-9137-1.

Barker, Chris & Chung-chieh Shan. 2008. Donkey anaphora is in-scope binding. Semantics and Pragmatics 1(1).
1–46. https://doi.org/10.3765/sp.1.1.

Barker, Chris & Chung-chieh Shan. 2014. Continuations and natural language. Oxford: Oxford University Press.
https://doi.org/10.1093/acprof:oso/9780199575015.001.0001.

Bernardi, Ra�aella & Anna Szabolcsi. 2008. Optionality, scope, and licensing: An application of partially ordered
categories. Journal of Logic, Language and Information 17(3). 237–283. https://doi.org/10.1007/s1084
9-008-9060-y.

Bittner, Maria. 2001. Surface composition as bridging. Journal of Semantics 18(2). 127–177. https://doi.org
/10.1093/jos/18.2.127.

Bott, Oliver &Wolfgang Sternefeld. 2017. An event semantics with continuations for incremental interpretation.
Journal of Semantics 34(2). 201–236.

Brasoveanu, Adrian & Jakub Dotlačil. 2020. Computational cognitive modeling and linguistic theory. Springer
Nature.

Büring, Daniel. 2004. Crossover situations. Natural Language Semantics 12(1). 23–62. https://doi.org/10.1
023/B:NALS.0000011144.81075.a8.

Butler, Alastair. 2003. Predicate logic with barriers and its locality e�ects. In Proceedings of Sinn und Bedeutung,
vol. 7, 70–80.

Carette, Jacques, Oleg Kiselyov & Chung-chieh Shan. 2009. Finally tagless, partially evaluated: tagless staged
interpreters for simpler typed languages. Journal of Functional Programming 19(5). 509–543. https://doi
.org/10.1017/S0956796809007205.

Charlow, Simon. 2010. Two kinds of binding out of DP. Unpublished ms.

Charlow, Simon. 2012. Cross-categorial donkeys. In Maria Aloni, Vadim Kimmelman, Floris Roelofsen, Galit W.
Sassoon, Katrin Schulz & Matthijs Westera (eds.), Logic, Language and Meaning, vol. 7218 (Lecture Notes
in Computer Science), 261–270. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-31
482-7_27.

Charlow, Simon. 2014. On the semantics of exceptional scope. New York University Ph.D. thesis. https://sema
nticsarchive.net/Archive/2JmMWRjY/.

Charlow, Simon. 2017. Post-suppositions and semantic theory. Accepted at Journal of Semantics. https://lin
g.auf.net/lingbuzz/003243.

https://doi.org/10.1017/S095679680900728X
https://doi.org/doi:10.1162/ling_a_00108
https://doi.org/10.1007/s10988-013-9137-1
https://doi.org/10.1007/s10988-013-9137-1
https://doi.org/10.3765/sp.1.1
https://doi.org/10.1093/acprof:oso/9780199575015.001.0001
https://doi.org/10.1007/s10849-008-9060-y
https://doi.org/10.1007/s10849-008-9060-y
https://doi.org/10.1093/jos/18.2.127
https://doi.org/10.1093/jos/18.2.127
https://doi.org/10.1023/B:NALS.0000011144.81075.a8
https://doi.org/10.1023/B:NALS.0000011144.81075.a8
https://doi.org/10.1017/S0956796809007205
https://doi.org/10.1017/S0956796809007205
https://doi.org/10.1007/978-3-642-31482-7_27
https://doi.org/10.1007/978-3-642-31482-7_27
https://semanticsarchive.net/Archive/2JmMWRjY/
https://semanticsarchive.net/Archive/2JmMWRjY/
https://ling.auf.net/lingbuzz/003243
https://ling.auf.net/lingbuzz/003243

40

Charlow, Simon. 2019a. A modular theory of pronouns and binding. Unpublished ms., Rutgers University.
https://ling.auf.net/lingbuzz/003720.

Charlow, Simon. 2019b. Static and dynamic exceptional scope. Accepted at Journal of Semantics. https://lin
g.auf.net/lingbuzz/004650.

Chierchia, Gennaro. 2005. De�nites, locality, and intentional identity. In Gregory N. Carlson & Francis Je�ry
Pelletier (eds.), Reference and quanti�cation: The Partee e�ect, 143–177. Stanford: CSLI Publications.

Chierchia, Gennaro. 2020. Origins of weak crossover: when dynamic semantics meets event semantics. Natural
Language Semantics 28(1). 23–76. https://doi.org/10.1007/s11050-019-09158-3.

Cooper, Robin. 1979. The interpretation of pronouns. In Frank Heny & Helmut S. Schnelle (eds.), Syntax and
semantics, volume 10: Selections from the Third Groningen Round Table, 61–92. New York: Academic Press.

Danvy, Olivier. 1998. Functional unparsing. Journal of Functional Programming 8(6). 621–625. https://doi.o
rg/10.1017/S0956796898003104.

Dekker, Paul. 1994. Predicate logic with anaphora. In Mandy Harvey & Lynn Santelmann (eds.), Proceedings of
Semantics and Linguistic Theory 4, 79–95. Ithaca, NY: Cornell University. https://doi.org/10.3765/sa
lt.v4i0.2459.

Dekker, Paul. 2012. Dynamic semantics (Studies in Linguistics and Philosophy 91). Dordrecht: Springer Science+
Business Media. https://doi.org/10.1007/978-94-007-4869-9.

van Eijck, Jan. 2001. Incremental dynamics. Journal of Logic, Language and Information 10(3). 319–351. https:
//doi.org/10.1023/A:1011251627260.

Elbourne, Paul. 2005. Situations and individuals. Cambridge, MA: MIT Press.

Elliott, Patrick. 2020. Crossover and accessibility in dynamic semantics. Unpublished ms.

Fridlender, Daniel & Mia Indrika. 2000. Do we need dependent types? Journal of Functional Programming 10(4).
409–415. https://doi.org/10.1017/S0956796800003658.

Groenendijk, Jeroen & Martin Stokhof. 1991. Dynamic predicate logic. Linguistics and Philosophy 14(1). 39–100.
https://doi.org/10.1007/BF00628304.

Hardt, Daniel. 1993. VP ellipsis: Form, meaning, and processing. University of Pennsylvania Ph.D. thesis. https:
//repository.upenn.edu/dissertations/AAI9331786.

Hardt, Daniel. 1999. Dynamic interpretation of verb phrase ellipsis. Linguistics and Philosophy 22(2). 187–221.
https://doi.org/10.1023/A:1005427813846.

Heim, Irene. 1982. The semantics of de�nite and inde�nite noun phrases. University of Massachusetts, Amherst
Ph.D. thesis. https://semanticsarchive.net/Archive/Tk0ZmYyY/.

Heim, Irene & Angelika Kratzer. 1998. Semantics in generative grammar. Oxford: Blackwell.

Jacobson, Pauline. 1999. Towards a variable-free semantics. Linguistics and Philosophy 22(2). 117–184. https:
//doi.org/10.1023/A:1005464228727.

Jacobson, Pauline. 2014. Compositional semantics: An introduction to the syntax/semantics interface. Oxford:
Oxford University Press.

Jäger, Gerhard. 2005. Anaphora and type logical grammar. Dordrecht: Springer. https://doi.org/10.1007/1
-4020-3905-0.

https://ling.auf.net/lingbuzz/003720
https://ling.auf.net/lingbuzz/004650
https://ling.auf.net/lingbuzz/004650
https://doi.org/10.1007/s11050-019-09158-3
https://doi.org/10.1017/S0956796898003104
https://doi.org/10.1017/S0956796898003104
https://doi.org/10.3765/salt.v4i0.2459
https://doi.org/10.3765/salt.v4i0.2459
https://doi.org/10.1007/978-94-007-4869-9
https://doi.org/10.1023/A:1011251627260
https://doi.org/10.1023/A:1011251627260
https://doi.org/10.1017/S0956796800003658
https://doi.org/10.1007/BF00628304
https://repository.upenn.edu/dissertations/AAI9331786
https://repository.upenn.edu/dissertations/AAI9331786
https://doi.org/10.1023/A:1005427813846
https://semanticsarchive.net/Archive/Tk0ZmYyY/
https://doi.org/10.1023/A:1005464228727
https://doi.org/10.1023/A:1005464228727
https://doi.org/10.1007/1-4020-3905-0
https://doi.org/10.1007/1-4020-3905-0

41

Kamp, Hans. 1981. A theory of truth and semantic interpretation. In Jeroen Groenendijk, Theo M. V. Janssen &
Martin Stokhof (eds.), Formal Methods in the Study of Language, 277–322. Mathematical Centre Amsterdam.

Kiselyov, Oleg. 2012. Typed Tagless Final Interpreters. In Jeremy Gibbons (ed.), Generic and Indexed Program-
ming: International Spring School, SSGIP 2010, Oxford, UK, March 22-26, 2010, Revised Lectures, 130–174.
Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-32202-0_3.

Martin, Scott. 2016. Supplemental update. Semantics and Pragmatics 9(5). 1–61. https://doi.org/10.3765/s
p.9.5.

Merchant, Jason. 2001. The syntax of silence: Sluicing, islands, and the theory of ellipsis. Oxford: Oxford University
Press.

Muskens, Reinhard. 1995. Tense and the logic of change. In Urs Egli, Peter E. Pause, Christoph Schwarze,
Arnim von Stechow & Götz Wienold (eds.), Lexical Knowledge in the Organization of Language, 147–183.
Amsterdam: John Benjamins. https://doi.org/10.1075/cilt.114.08mus.

Muskens, Reinhard. 1996. Combining Montague semantics and discourse representation. Linguistics and
Philosophy 19(2). 143–186. https://doi.org/10.1007/BF00635836.

Pierce, Benjamin C. 2002. Types and programming languages. Cambridge, MA: MIT Press.

Rett, Jessica. 2022. A typology of semantic entities. In Daniel Altshuler (ed.), Linguistics meets philosophy,
chap. 9. Oxford: Cambridge University Press.

Rooth, Mats. 1985. Association with focus. University of Massachusetts, Amherst Ph.D. thesis.

Sauerland, Uli. 2007. Copying vs. structure sharing: a semantic argument. Linguistic Variation Yearbook 7(1).
27–51. https://doi.org/10.1075/livy.7.03sau.

Schwarz, Bernhard. 2000. Topics in ellipsis. University of Massachusetts, Amherst Ph.D. thesis. https://schol
arworks.umass.edu/dissertations/AAI9960789.

Shan, Chung-chieh & Chris Barker. 2006. Explaining crossover and superiority as left-to-right evaluation.
Linguistics and Philosophy 29(1). 91–134. https://doi.org/10.1007/s10988-005-6580-7.

Szabolcsi, Anna. 1989. Bound variables in syntax (are there any?) In Renate Bartsch, Johan van Benthem &
Peter van Emde Boas (eds.), Semantics and contextual expressions, 295–318. Dordrecht: Foris.

Tomioka, Satoshi. 1999. A sloppy identity puzzle. Natural Language Semantics 7(2). 217–241. https://doi.or
g/10.1023/A:1008309217917.

Vermeulen, C. F. M. 1993. Sequence semantics for dynamic predicate logic. Journal of Logic, Language and
Information 2(3). 217–254. https://doi.org/10.1007/BF01050788.

Wadler, Philip. 1994. Monads and composable continuations. LISP and Symbolic Computation 7(1). 39–56.
https://doi.org/10.1007/BF01019944.

https://doi.org/10.1007/978-3-642-32202-0_3
https://doi.org/10.3765/sp.9.5
https://doi.org/10.3765/sp.9.5
https://doi.org/10.1075/cilt.114.08mus
https://doi.org/10.1007/BF00635836
https://doi.org/10.1075/livy.7.03sau
https://scholarworks.umass.edu/dissertations/AAI9960789
https://scholarworks.umass.edu/dissertations/AAI9960789
https://doi.org/10.1007/s10988-005-6580-7
https://doi.org/10.1023/A:1008309217917
https://doi.org/10.1023/A:1008309217917
https://doi.org/10.1007/BF01050788
https://doi.org/10.1007/BF01019944

	Introduction
	Dynamic semantics
	Variable-free semantics
	Inductive indices
	A static, variable-free fragment

	Continuations
	Indexed state
	Dynamic pronouns

	Crossover
	Gorn indices

	Cross-categorial anaphora
	Higher-order anaphora

	Discussion and comparison
	Hardt (1999) and other theories of ellipsis
	Buring (2004) and Chierchia (2020)
	Barker & Shan (2008)
	Dynamic Semantics

	Conclusion

